999 research outputs found

    Triplet luminescent dinuclear-gold(I) complex-based light-emitting diodes with low turn-on voltage

    Get PDF
    The electroluminescence (EL) from a dinuclear-gold(I)-chlorate compound containing bridging phosphine ligands [Au 2(dppm)Cl 2] as emitting layer is reported. Devices with a structure Al/Au 2(dppm)Cl 2/indium-tin-oxide demonstrated a uniform emission under the driving voltage below 1 V. The EL emission was from triplet excited state and the emission color of the device was found to depend on the deposition rate of Au 2(dppm)Cl 2, which can be explained as the different aggregation forms of the stacking compound in the deposition process. © 1999 American Institute of Physics.published_or_final_versio

    Review of multi-scale electromagnetic modeling

    Get PDF
    This paper reviews various methods to solve multiscale problems ranging from low-frequency methods to very high-frequency methods. ©2010 IEEE.published_or_final_versionThe 2010 International Conference on Electromagnetics in Advanced Applications (ICEAA), Sydney, N.S.W., 20-24 September 2010. In Proceedings of ICEAA'10, 2010, p. 641-64

    Attitudes and expectations of patients with advanced cancer towards community palliative care service in Hong Kong

    Get PDF
    Conference Theme: Happy Staff - Healthy People (開心員工 - 共建民康)published_or_final_versionThe 2010 Hospital Authority Convention, Hong Kong, 10-11 May 2010

    Evaluation of macrophage migration inhibitory factor as an imaging marker for hepatocellular carcinoma in murine models

    Get PDF
    Objective. Macrophage migration inhibitory factor (MIF) is considered as an important mediator in the pathogenesis of neoplasia. The aim of the present study was to evaluate whether MIF could be used as a marker for hepatocellular carcinoma (HCC) detection. Material and methods. Biodistribution and whole-body autoradiography studies of 131I-labeled anti-MIF monoclonal antibody (McAb) and 131I-labeled control IgG were performed. The HCC-bearing mice were injected with 3.7 MBq of each agent and killed at 24, 48, and 72 h postinjection (p.i.). The organs, blood, and HCC tissues were removed from model mice, weighed, and counted using a gamma-counter. The expression of MIF mRNA and protein within HCC tissues was confirmed by RT-PCR and immunohistochemistry. Results. HCCs in model mice could be adequately visualized at 24 h p.i. The target-to-non-target (T/NT) ratios were 6.72 ± 1.09 (24 h), 9.85 ± 0.81 (48 h), and 12.31 ± 0.57 (72 h) for 131I-labeled anti-MIF McAb group, whereas in the control group of 131I-IgG, T/NT ratios were 4.65 ± 0.63 (24 h), 6.12 ± 0.60 (48 h), and 8.23 ± 0.35 (72 h) (p < 0.05). MIF mRNA expression was twofold higher in the HCC tissues than in the healthy liver tissues. MIF protein expression was much higher in the HCC tissues than in controls. Conclusions. Our findings suggested that 131I-anti-MIF McAb could be rapidly and specifically localized in tumors. Thus, MIF could be used as a marker for HCC tumor detection

    Generation of subject-specific, dynamic, multisegment ankle and foot models to improve orthotic design: a feasibility study

    Get PDF
    ABSTRACT: BACKGROUND: Currently, custom foot and ankle orthosis prescription and design tend to be based on traditional techniques, which can result in devices which vary greatly between clinicians and repeat prescription. The use of computational models of the foot may give further insight in the biomechanical effects of these devices and allow a more standardised approach to be taken to their design, however due to the complexity of the foot the models must be highly detailed and dynamic. METHODS: Functional and anatomical datasets will be collected in a multicentre study from 10 healthy participants and 15 patients requiring orthotic devices. The patient group will include individuals with metarsalgia, flexible flat foot and drop foot. Each participant will undergo a clinical foot function assessment, 3D surface scans of the foot under different loading conditions, and detailed gait analysis including kinematic, kinetic, muscle activity and plantar pressure measurements in both barefoot and shod conditions. Following this each participant will undergo computed tomography (CT) imaging of their foot and ankle under a range of loads and positions while plantar pressures are recorded. A further subgroup of participants will undergo magnetic resonance imaging (MRI) of the foot and ankle. Imaging data will be segmented to derive the size of bones and orientation of the joint axes. Insertion points of muscles and ligaments will be determined from the MRI and CT-scans and soft tissue material properties computed from the loaded CT data in combination with the plantar pressure measurements. Gait analysis data will be used to drive the models and in combination with the 3D surface scans for scaling purposes. Predicted plantar pressures and muscle activation patterns predicted from the models will be compared to determine the validity of the models. DISCUSSION: This protocol will lead to the generation of unique datasets which will be used to develop linked inverse dynamic and forward dynamic biomechanical foot models. These models may be beneficial in predicting the effect of and thus improving the efficacy of orthotic devices for the foot and ankle

    Improved Measurements of Partial Rate Asymmetry in B -> h h Decays

    Full text link
    We report improved measurements of the partial rate asymmetry (Acp) in B -> h h decays with 140fb^-1 of data collected with the Belle detector at the KEKB e+e- collider. Here h stands for a charged or neutral pion or kaon and in total five decay modes are included: K-+ pi+-, K0s pi-+, K-+ pi0, pi-+ pi0 and K0s pi0. The flavor of the last decay mode is determined from the accompanying B meson. Using a data sample 4.7 times larger than that of our previous measurement, we find Acp(K-+ pi+-) -0.088+-0.035+-0.013, 2.4 sigma from zero. Results for other decay modes are also presented.Comment: 9 pages, 1 figur

    Isolation and Genetic Characteristics of Human Genotype 1 Japanese Encephalitis Virus, China, 2009

    Get PDF
    BACKGROUND: Several studies have shown that the predominant genotype of Chinese Japanese encephalitis virus (JEV) is evolving from genotype 3 to genotype 1. However, in recent years, almost all genotype 1 isolates were from mosquitoes, and genotype 1 has been less associated with human disease than genotype 3. This study reports the isolation of human genotype 1 JEV and its genetic characteristics to provide additional insights into human JE pathogens that are currently circulating in China. METHODS AND RESULTS: In 2009, 31 cerebrospinal fluid samples were collected from patients living in Yunnan and Shanxi provinces and were used to inoculate Aedes albopictus C6/36 cells for virus isolation. The JEV strains were identified using immunofluorescent assays and the reverse transcription-polymerase chain reaction. Phylogenetic analyses based on the partial capsid/pre-membrane and full envelope (E) sequences were performed using Clustalx 1.8 software. Three JEV isolates were obtained from a 4-year-old girl and a 2-year-old boy living in Yunnan and an 82-year-old woman in Shanxi. The boy had been immunized with one dose of JE live attenuated vaccine. New isolates were grouped into genotype 1. Amino acid sequence for the viral E protein indicated 95% to 100% identity with each other and with other JEV strains. When compared with a consensus sequence of E protein, two amino acid substitutions were found: Ser(E-123)-Asn in the two Yunnan isolates and Lys(E-166)-Arg in the Shanxi isolate. CONCLUSIONS: Our findings indicate that the genotype 1 of JEV is causing human infections in China. Our observation of a previously vaccinated boy developing JE from genotype 1 virus infection also calls for more detailed studies, both in vitro and in vivo neutralization tests as well as active surveillance, to examine the possibility of a lack of complete protection conferred by the live attenuated JE vaccine against genotype 1 virus

    Multi-Level Targeting of the Phosphatidylinositol-3-Kinase Pathway in Non-Small Cell Lung Cancer Cells

    Get PDF
    Introduction: We assessed expression of p85 and p110a PI3K subunits in non-small cell lung cancer (NSCLC) specimens and the association with mTOR expression, and studied effects of targeting the PI3K/AKT/mTOR pathway in NSCLC cell lines. Methods: Using Automated Quantitative Analysis we quantified expression of PI3K subunits in two cohorts of 190 and 168 NSCLC specimens and correlated it with mTOR expression. We studied effects of two PI3K inhibitors, LY294002 and NVP-BKM120, alone and in combination with rapamycin in 6 NSCLC cell lines. We assessed activity of a dual PI3K/mTOR inhibitor

    Search for a Technicolor omega_T Particle in Events with a Photon and a b-quark Jet at CDF

    Full text link
    If the Technicolor omega_T particle exists, a likely decay mode is omega_T -> gamma pi_T, followed by pi_T -> bb-bar, yielding the signature gamma bb-bar. We have searched 85 pb^-1 of data collected by the CDF experiment at the Fermilab Tevatron for events with a photon and two jets, where one of the jets must contain a secondary vertex implying the presence of a b quark. We find no excess of events above standard model expectations. We express the result of an exclusion region in the M_omega_T - M_pi_T mass plane.Comment: 14 pages, 2 figures. Available from the CDF server (PS with figs): http://www-cdf.fnal.gov/physics/pub98/cdf4674_omega_t_prl_4.ps FERMILAB-PUB-98/321-
    corecore