25 research outputs found
Ultrafast changes in lattice symmetry probed by coherent phonons
The electronic and structural properties of a material are strongly
determined by its symmetry. Changing the symmetry via a photoinduced phase
transition offers new ways to manipulate material properties on ultrafast
timescales. However, in order to identify when and how fast these phase
transitions occur, methods that can probe the symmetry change in the time
domain are required. We show that a time-dependent change in the coherent
phonon spectrum can probe a change in symmetry of the lattice potential, thus
providing an all-optical probe of structural transitions. We examine the
photoinduced structural phase transition in VO2 and show that, above the phase
transition threshold, photoexcitation completely changes the lattice potential
on an ultrafast timescale. The loss of the equilibrium-phase phonon modes
occurs promptly, indicating a non-thermal pathway for the photoinduced phase
transition, where a strong perturbation to the lattice potential changes its
symmetry before ionic rearrangement has occurred.Comment: 14 pages 4 figure
Metal-insulator transition in vanadium dioxide nanobeams: probing sub-domain properties of strongly correlated materials
Many strongly correlated electronic materials, including high-temperature
superconductors, colossal magnetoresistance and metal-insulator-transition
(MIT) materials, are inhomogeneous on a microscopic scale as a result of domain
structure or compositional variations. An important potential advantage of
nanoscale samples is that they exhibit the homogeneous properties, which can
differ greatly from those of the bulk. We demonstrate this principle using
vanadium dioxide, which has domain structure associated with its dramatic MIT
at 68 degrees C. Our studies of single-domain vanadium dioxide nanobeams reveal
new aspects of this famous MIT, including supercooling of the metallic phase by
50 degrees C; an activation energy in the insulating phase consistent with the
optical gap; and a connection between the transition and the equilibrium
carrier density in the insulating phase. Our devices also provide a
nanomechanical method of determining the transition temperature, enable
measurements on individual metal-insulator interphase walls, and allow general
investigations of a phase transition in quasi-one-dimensional geometry.Comment: 9 pages, 3 figures, original submitted in June 200
Infrared optical constants and band strengths of ices
A LABoratory spectroscopy workshop for ASTROphysics (ALABASTRO); Jaca (España); 27-30 June 2016; http://www.iem.csic.es/fismol/Alabastro/This workshop/summer school makes part of the activities programmed within the “Cosmic dust” project (Redes de Excelencia del Ministerio de Economía y Competitividad
