1,184 research outputs found
Dehydroepiandrosterone (DHEA) supplementation improves in vitro fertilization outcomes of poor ovarian responders, especially in women with low serum concentration of DHEA-S: a retrospective cohort study
Background: Dehydroepiandrosterone (DHEA) is now widely used as an adjuvant for in vitro fertilization (IVF)
cycles in poor ovarian responders (PORs). Several studies showed that DHEA supplementation could improve IVF
outcomes of PORs. However, most of the PORs do not respond to DHEA clinically. Therefore, the aim of this study
is to confirm the beneficial effects of DHEA on IVF outcomes of PORs and to investigate which subgroups of PORs
can best benefit from DHEA supplementation.
Methods: This retrospective cohort study was performed between January 2015 and December 2017. A total of
151 PORs who fulfilled the Bologna criteria and underwent IVF cycles with the gonadotropin-releasing hormone
antagonist protocol were identified. The study group (n = 67) received 90 mg of DHEA daily for an average of
3 months before the IVF cycles. The control group (n = 84) underwent the IVF cycles without DHEA pretreatment.
The basic and cycle characteristics and IVF outcomes between the two groups were compared using independent
t-tests, Chi-Square tests and binary logistic regression.
Results: The study and control groups did not show significant differences in terms of basic characteristics. The study
group demonstrated a significantly greater number of retrieved oocytes, metaphase II oocytes, fertilized oocytes, day 3
embryos and top-quality embryos at day 3 and a higher clinical pregnancy rate, ongoing pregnancy rate and live birth
rate than those measures in the control group. The multivariate analysis revealed that DHEA supplementation was
positively associated with clinical pregnancy rate (OR = 4.93, 95% CI 1.68–14.43, p = 0.004). Additionally, in the study
group, the multivariate analysis showed that serum dehydroepiandrosterone-sulfate (DHEA-S) levels < 180 μg/dl were
significantly associated with a rate of retrieved oocytes > 3 (OR = 5.92, 95% CI 1.48–23.26, p = 0.012).
Conclusions: DHEA supplementation improves IVF outcomes of PORs. In PORs with DHEA pretreatment, women with
lower DHEA-S level may have greater possibility of attaining more than 3 oocytes
Enhancing Therapeutic Efficacy of Cinnamon Essential Oil by Nanoemulsification for Intravaginal Treatment of Candida Vaginitis
Yi-Ting Lin,1 Wei-Chung Tsai,1 Hsueh-Yu Lu,1 Shih-Yuan Fang,1 Hsiang-Wen Chan,1 Chung-Hsiung Huang1,2 1Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan; 2Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, TaiwanCorrespondence: Chung-Hsiung Huang, Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, Tel +886-2-2462-2192 ext. 5116, Email [email protected]: Due to its prevalence, recurrence, and the emergence of drug-resistance, Candida vaginitis significantly impacts the well-being of women. Although cinnamon essential oil (CEO) possesses antifungal activity, its hydrophobic properties limit its clinical application.Purpose: To overcome this challenge, a nanoemulsification technology was employed to prepare cinnamon essential oil-nanoemulsion (CEO@NE), and its therapeutic efficacy and action mechanism for Candida vaginitis was investigated in vivo and in vitro.Materials and Methods: CEO@NE, composed of 4% CEO, 78% distilled water, and 18% Tween 80, was prepared by ultrasonic nanoemulsification. The physical properties, anti-Candida activity, cytotoxicity, immunomodulatory potential and storage stability of CEO@NE were explored. Subsequently, the effect of intravaginal CEO@NE treatment on Candida vaginitis was investigated in mice. To comprehend the possible mechanism of CEO@NE, an analysis was conducted to ascertain the production of intracellular reactive oxygen species (ROS) in C. albicans.Results: CEO@NE, with the droplet size less than 100 nm and robust storage stability for up to 8 weeks, exhibited comparable anti-Candida activity with CEO. CEO@NE at the concentration lower than 400 μg/mL had no cytotoxic and immunomodulatory effects on murine splenocytes. Intravaginal treatment of CEO@NE (400 μg/mL, 20 μL/day/mouse for 5 consecutive days) curbed Candida colonization, ameliorated histopathological changes, and suppressed inflammatory cytokine production in mice intravaginally challenged with C. albicans. Notably, this treatment preserved the density of vaginal lactic acid bacteria (LAB) crucial for vaginal health. Co-culturing C. albicans with CEO@NE revealed concentration-dependent augmentation of intracellular ROS generation and ensuing cell death. In addition, co-culturing LPS-stimulated murine splenocytes with CEO@NE yielded a decrease in the generation of cytokines.Conclusion: This discovery provides insight into the conceivable antifungal and anti-inflammatory mechanisms of CEO@NE to tackle Candida vaginitis. CEO@NE offers a promising avenue to address the limitations of current treatments, providing novel strategy for treating Candida vaginitis.Keywords: anti-inflammation, Candida vaginitis, cinnamon essential oil, nanoemulsion, reactive oxygen specie
Metal-insulator transition in vanadium dioxide nanobeams: probing sub-domain properties of strongly correlated materials
Many strongly correlated electronic materials, including high-temperature
superconductors, colossal magnetoresistance and metal-insulator-transition
(MIT) materials, are inhomogeneous on a microscopic scale as a result of domain
structure or compositional variations. An important potential advantage of
nanoscale samples is that they exhibit the homogeneous properties, which can
differ greatly from those of the bulk. We demonstrate this principle using
vanadium dioxide, which has domain structure associated with its dramatic MIT
at 68 degrees C. Our studies of single-domain vanadium dioxide nanobeams reveal
new aspects of this famous MIT, including supercooling of the metallic phase by
50 degrees C; an activation energy in the insulating phase consistent with the
optical gap; and a connection between the transition and the equilibrium
carrier density in the insulating phase. Our devices also provide a
nanomechanical method of determining the transition temperature, enable
measurements on individual metal-insulator interphase walls, and allow general
investigations of a phase transition in quasi-one-dimensional geometry.Comment: 9 pages, 3 figures, original submitted in June 200
Population genomics of domestic and wild yeasts
The natural genetics of an organism is determined by the distribution of sequences of its genome. Here we present one- to four-fold, with some deeper, coverage of the genome sequences of over seventy isolates of the domesticated baker's yeast, _Saccharomyces cerevisiae_, and its closest relative, the wild _S. paradoxus_, which has never been associated with human activity. These were collected from numerous geographic locations and sources (including wild, clinical, baking, wine, laboratory and food spoilage). These sequences provide an unprecedented view of the population structure, natural (and artificial) selection and genome evolution in these species. Variation in gene content, SNPs, indels, copy numbers and transposable elements provide insights into the evolution of different lineages. Phenotypic variation broadly correlates with global genome-wide phylogenetic relationships however there is no correlation with source. _S. paradoxus_ populations are well delineated along geographic boundaries while the variation among worldwide _S. cerevisiae_ isolates show less differentiation and is comparable to a single _S. paradoxus_ population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of _S. cerevisiae_ shows a few well defined geographically isolated lineages and many different mosaics of these lineages, supporting the notion that human influence provided the opportunity for outbreeding and production of new combinations of pre-existing variation
HypertenGene: extracting key hypertension genes from biomedical literature with position and automatically-generated template features
<p>Abstract</p> <p>Background</p> <p>The genetic factors leading to hypertension have been extensively studied, and large numbers of research papers have been published on the subject. One of hypertension researchers' primary research tasks is to locate key hypertension-related genes in abstracts. However, gathering such information with existing tools is not easy: (1) Searching for articles often returns far too many hits to browse through. (2) The search results do not highlight the hypertension-related genes discovered in the abstract. (3) Even though some text mining services mark up gene names in the abstract, the key genes investigated in a paper are still not distinguished from other genes. To facilitate the information gathering process for hypertension researchers, one solution would be to extract the key hypertension-related genes in each abstract. Three major tasks are involved in the construction of this system: (1) gene and hypertension named entity recognition, (2) section categorization, and (3) gene-hypertension relation extraction.</p> <p>Results</p> <p>We first compare the retrieval performance achieved by individually adding template features and position features to the baseline system. Then, the combination of both is examined. We found that using position features can almost double the original AUC score (0.8140vs.0.4936) of the baseline system. However, adding template features only results in marginal improvement (0.0197). Including both improves AUC to 0.8184, indicating that these two sets of features are complementary, and do not have overlapping effects. We then examine the performance in a different domain--diabetes, and the result shows a satisfactory AUC of 0.83.</p> <p>Conclusion</p> <p>Our approach successfully exploits template features to recognize true hypertension-related gene mentions and position features to distinguish key genes from other related genes. Templates are automatically generated and checked by biologists to minimize labor costs. Our approach integrates the advantages of machine learning models and pattern matching. To the best of our knowledge, this the first systematic study of extracting hypertension-related genes and the first attempt to create a hypertension-gene relation corpus based on the GAD database. Furthermore, our paper proposes and tests novel features for extracting key hypertension genes, such as relative position, section, and template features, which could also be applied to key-gene extraction for other diseases.</p
Radiative Transfer for Exoplanet Atmospheres
Remote sensing of the atmospheres of distant worlds motivates a firm
understanding of radiative transfer. In this review, we provide a pedagogical
cookbook that describes the principal ingredients needed to perform a radiative
transfer calculation and predict the spectrum of an exoplanet atmosphere,
including solving the radiative transfer equation, calculating opacities (and
chemistry), iterating for radiative equilibrium (or not), and adapting the
output of the calculations to the astronomical observations. A review of the
state of the art is performed, focusing on selected milestone papers.
Outstanding issues, including the need to understand aerosols or clouds and
elucidating the assumptions and caveats behind inversion methods, are
discussed. A checklist is provided to assist referees/reviewers in their
scrutiny of works involving radiative transfer. A table summarizing the
methodology employed by past studies is provided.Comment: 7 pages, no figures, 1 table. Filled in missing information in
references, main text unchange
New "light" for one-world approach toward safe and effective control of animal diseases and insect vectors from leishmaniac perspectives
Light is known to excite photosensitizers (PS) to produce cytotoxic reactive oxygen species (ROS) in the presence of oxygen. This modality is attractive for designing control measures against animal diseases and pests. Many PS have a proven safety record. Also, the ROS cytotoxicity selects no resistant mutants, unlike other drugs and pesticides. Photodynamic therapy (PDT) refers to the use of PS as light activable tumoricides, microbicides and pesticides in medicine and agriculture.Here we describe "photodynamic vaccination" (PDV) that uses PDT-inactivation of parasites, i.e. Leishmania as whole-cell vaccines against leishmaniasis, and as a universal carrier to deliver transgenic add-on vaccines against other infectious and malignant diseases. The efficacy of Leishmania for vaccine delivery makes use of their inherent attributes to parasitize antigen (vaccine)-presenting cells. Inactivation of Leishmania by PDT provides safety for their use. This is accomplished in two different ways: (i) chemical engineering of PS to enhance their uptake, e.g. Si-phthalocyanines; and (ii) transgenic approach to render Leishmania inducible for porphyrinogenesis. Three different schemes of Leishmania-based PDV are presented diagrammatically to depict the cellular events resulting in cell-mediated immunity, as seen experimentally against leishmaniasis and Leishmania-delivered antigen in vitro and in vivo. Safety versus efficacy evaluations are under way for PDT-inactivated Leishmania, including those further processed to facilitate their storage and transport. Leishmania transfected to express cancer and viral vaccine candidates are being prepared accordingly for experimental trials.We have begun to examine PS-mediated photodynamic insecticides (PDI). Mosquito cells take up rose bengal/cyanosine, rendering them light-sensitive to undergo disintegration in vitro, thereby providing a cellular basis for the larvicidal activity seen by the same treatments. Ineffectiveness of phthalocyanines and porphyrins for PDI underscores its requirement for different PS. Differential uptake of PS by insect versus other cells to account for this difference is under study.The ongoing work is patterned after the one-world approach by enlisting the participation of experts in medicinal chemistry, cell/molecular biology, immunology, parasitology, entomology, cancer research, tropical medicine and veterinary medicine. The availability of multidisciplinary expertise is indispensable for implementation of the necessary studies to move the project toward product development
KSHV PAN RNA Associates with Demethylases UTX and JMJD3 to Activate Lytic Replication through a Physical Interaction with the Virus Genome
Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of Kaposi's sarcoma and body cavity lymphomas. KSHV lytic infection produces PAN RNA, a highly abundant noncoding polyadenylated transcript that is retained in the nucleus. We recently demonstrated that PAN RNA interacts with several viral and cellular factors and can disregulate the expression of genes that modulate immune response. In an effort to define the role of PAN RNA in the context of the virus genome we generated a recombinant BACmid that deleted the PAN RNA locus. Because of the apparent duplication of the PAN RNA locus in BAC36, we generated BAC36CR, a recombinant BACmid that removes the duplicated region. BAC36CR was used as a template to delete most of the PAN RNA locus to generate BAC36CRΔPAN. BAC36CRΔPAN failed to produce supernatant virus and displayed a general decrease in mRNA accumulation of representative immediate early, early and late genes. Most strikingly, K-Rta expression was decreased in lytically induced BAC36CRΔPAN-containing cell lines at early and late time points post induction. Expression of PAN RNA in trans in BAC36CRΔPAN containing cells resulted in an increase in K-Rta expression, however K-Rta over expression failed to rescue BAC36CRΔPAN, suggesting that PAN RNA plays a wider role in virus replication. To investigate the role of PAN RNA in the activation of K-Rta expression, we demonstrate that PAN RNA physically interacts with the ORF50 promoter. RNA chromatin immunoprecipitation assays show that PAN RNA interacts with demethylases JMJD3 and UTX, and the histone methyltransferase MLL2. Consistent with the interaction with demethylases, expression of PAN RNA results in a decrease of the repressive H3K27me3 mark at the ORF50 promoter. These data support a model where PAN RNA is a multifunctional regulatory transcript that controls KSHV gene expression by mediating the modification of chromatin by targeting the KSHV repressed genome
- …