216 research outputs found

    Evaluating the impact of atmospheric forcing and air–sea coupling on near-coastal regional ocean prediction

    Get PDF
    Atmospheric forcing applied as ocean model boundary conditions can have a critical impact on the quality of ocean forecasts. This paper assesses the sensitivity of an eddy-resolving (1.5 km resolution) regional ocean model of the north-west European Shelf (NWS) to the choice of atmospheric forcing and atmosphere–ocean coupling. The analysis is focused on a month-long simulation experiment for July 2014 and evaluation of simulated sea surface temperature (SST) in a shallow near-coastal region to the south-west of the UK (Celtic Sea and western English Channel). Observations of the ocean and atmosphere are used to evaluate model results, with a particular focus on the L4 ocean buoy from the Western Channel Observatory as a rare example of co-located data above and below the sea surface. The impacts of differences in the atmospheric forcing are illustrated by comparing results from an ocean model run in forcing mode using operational global-scale numerical weather prediction (NWP) data with an ocean model run forced by a convective-scale regional atmosphere model. The value of dynamically representing feedbacks between the atmosphere and ocean state is assessed via the use of these model components within a fully coupled ocean–wave–atmosphere system. Simulated SSTs show considerable sensitivity to atmospheric forcing and to the impact of model coupling in near-coastal areas. A warm ocean bias relative to in situ observations in the simulation forced by global-scale NWP (0.7 K in the model domain) is shown to be reduced (to 0.4 K) via the use of the 1.5 km resolution regional atmospheric forcing. When simulated in coupled mode, this bias is further reduced (by 0.2 K). Results demonstrate much greater variability of both the surface heat budget terms and the near-surface winds in the convective-scale atmosphere model data, as might be expected. Assessment of the surface heat budget and wind forcing over the ocean is challenging due to a scarcity of observations. However, it can be demonstrated that the wind speed over the ocean simulated by the convective-scale atmosphere did not agree as well with the limited number of observations as the global-scale NWP data did. Further partially coupled experiments are discussed to better understand why the degraded wind forcing does not detrimentally impact on SST results

    Increased levels of (class switched) memory B cells in peripheral blood of current smokers

    Get PDF
    There is increasing evidence that a specific immune response contributes to the pathogenesis of COPD. B-cell follicles are present in lung tissue and increased anti-elastin titers have been found in plasma of COPD patients. Additionally, regulatory T cells (Tregs) have been implicated in its pathogenesis as they control immunological reactions. We hypothesize that the specific immune response in COPD is smoke induced, either by a direct effect of smoking or as a result of smoke-induced lung tissue destruction (i.e. formation of neo-epitopes or auto antigens). Furthermore, we propose that Tregs are involved in the suppression of this smoke-induced specific immune response

    A critical analysis of the tumour immunosurveillance controversy for 3-MCA-induced sarcomas

    Get PDF
    The cancer immunoediting hypothesis has gained significant footing over the past decade as a result of work performed using sarcomas induced by 3-methylcholanthrene (3-MCA) in mice. Despite the progress made by several groups in establishing evidence for the three phases of immunoediting (elimination, equilibrium and escape), there continues to be active controversy on the nature of interaction between spontaneously formed tumour cells and the immune system during the early phases of tumourigenesis. At the root of this controversy is conflicting and unresolved evidence spanning back to the 1970s regarding the incidence and frequency of 3-MCA-induced sarcomas in immunocompetent mice as compared to immunodeficient mice. In this mini review we provide a critical analysis of both sides of this controversy

    Heme oxygenase-1 prevents smoke induced B-cell infiltrates: a role for regulatory T cells?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smoking is the most important cause for the development of COPD. Since not all smokers develop COPD, it is obvious that other factors must be involved in disease development. We hypothesize that heme oxygenase-1 (HO-1), a protective enzyme against oxidative stress and inflammation, is insufficiently upregulated in COPD.</p> <p>The effects of HO-1 modulation on cigarette smoke induced inflammation and emphysema were tested in a smoking mouse model.</p> <p>Methods</p> <p>Mice were either exposed or sham exposed to cigarette smoke exposure for 20 weeks. Cobalt protoporphyrin or tin protoporphyrin was injected during this period to induce or inhibit HO-1 activity, respectively. Afterwards, emphysema development, levels of inflammatory cells and cytokines, and the presence of B-cell infiltrates in lung tissue were analyzed.</p> <p>Results</p> <p>Smoke exposure induced emphysema and increased the numbers of inflammatory cells and numbers of B-cell infiltrates, as well as the levels of inflammatory cytokines in lung tissue. HO-1 modulation had no effects on smoke induced emphysema development, or the increases in neutrophils and macrophages and inflammatory cytokines. Interestingly, HO-1 induction prevented the development of smoke induced B-cell infiltrates and increased the levels of CD4<sup>+</sup>CD25<sup>+ </sup>T cells and Foxp3 positive cells in the lungs. Additionally, the CD4<sup>+</sup>CD25<sup>+ </sup>T cells correlated positively with the number of Foxp3 positive cells in lung tissue, indicating that these cells were regulatory T cells.</p> <p>Conclusion</p> <p>These results support the concept that HO-1 expression influences regulatory T cells and indicates that this mechanism is involved in the suppression of smoke induced B-cell infiltrates. The translation of this interaction to human COPD should now be pursued.</p

    Gene Expression Profiling and Molecular Characterization of Antimony Resistance in Leishmania amazonensis

    Get PDF
    Leishmania are unicellular microorganisms that can be transmitted to humans by the bite of sandflies. They cause a spectrum of diseases called leishmaniasis, which are classified as neglected tropical diseases by the World Health Organization. The treatment of leishmaniasis is based on the administration of antimony-containing drugs. These drugs have been used since 1947 and still constitute the mainstay for leishmaniasis treatment in several countries. One of the problems with these compounds is the emergence of resistance. Our work seeks to understand how these parasites become resistant to the drug. We studied antimony-resistant Leishmania amazonensis mutants. We analyzed gene expression at the whole genome level in antimony-resistant parasites and identified mechanisms used by Leishmania for resistance. This work could help us in developing new strategies for treatment in endemic countries where people are unresponsive to antimony-based chemotherapy. The identification of common mechanisms among different species of resistant parasites may also contribute to the development of diagnostic kits to identify and monitor the spread of resistance

    Identification of a Transcription Factor Controlling pH-Dependent Organic Acid Response in Aspergillus niger.

    Get PDF
    Acid formation in Aspergillus niger is known to be subjected to tight regulation, and the acid production profiles are fine-tuned to respond to the ambient pH. Based on transcriptome data, putative trans-acting pH responding transcription factors were listed and through knock out studies, mutants exhibiting an oxalate overproducing phenotype were identified. The yield of oxalate was increased up to 158% compared to the wild type and the corresponding transcription factor was therefore entitled Oxalic Acid repression Factor, OafA. Detailed physiological characterization of one of the ΔoafA mutants, compared to the wild type, showed that both strains produced substantial amounts of gluconic acid, but the mutant strain was more efficient in re-uptake of gluconic acid and converting it to oxalic acid, particularly at high pH (pH 5.0). Transcriptional profiles showed that 241 genes were differentially expressed due to the deletion of oafA and this supported the argument of OafA being a trans-acting transcription factor. Furthermore, expression of two phosphoketolases was down-regulated in the ΔoafA mutant, one of which has not previously been described in fungi. It was argued that the observed oxalate overproducing phenotype was a consequence of the efficient re-uptake of gluconic acid and thereby a higher flux through glycolysis. This results in a lower flux through the pentose phosphate pathway, demonstrated by the down-regulation of the phosphoketolases. Finally, the physiological data, in terms of the specific oxygen consumption, indicated a connection between the oxidative phosphorylation and oxalate production and this was further substantiated through transcription analysis

    A Plant-Specific Transcription Factor IIB-Related Protein, pBRP2, Is Involved in Endosperm Growth Control

    Get PDF
    General transcription factor IIB (TFIIB) and TFIIB-related factor (BRF), are conserved RNA polymerase II/III (RNAPII/III) selectivity factors that are involved in polymerase recruitment and transcription initiation in eukaryotes. Recent findings have shown that plants have evolved a third type of B-factor, plant-specific TFIIB-related protein 1 (pBRP1), which seems to be involved in RNAPI transcription. Here, we extend the repertoire of B-factors in plants by reporting the characterization of a novel TFIIB-related protein, plant-specific TFIIB-related protein 2 (pBRP2), which is found to date only in the Brassicacea family. Unlike other B-factors that are ubiquitously expressed, PBRP2 expression is restricted to reproductive organs and seeds as shown by RT-PCR, immunofluorescence labelling and GUS staining experiments. Interestingly, pbrp2 loss-of-function specifically affects the development of the syncytial endosperm, with both parental contributions required for wild-type development. pBRP2, is the first B-factor to exhibit cell-specific expression and regulation in eukaryotes, and might play a role in enforcing bi-parental reproduction in angiosperms

    A possible role for Phlebotomus (Anaphlebotomus) rodhaini (Parrot, 1930) in transmission of Leishmania donovani

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visceral leishmaniasis (VL, kala azar), caused by <it>Leishmania donovani </it>is a major health problem in Sudan and other East African countries. In this region the only proven vectors of <it>L. donovani </it>are <it>Phlebotomus orientalis </it>in eastern Sudan, Ethiopia and Upper Nile areas of Southern Sudan and <it>Phlebotomus martini </it>in Ethiopia, Kenya and Southern Sudan. In this report, we present the first evidence that <it>Phlebotomus rodhaini </it>may also play a role in maintaining transmission of <it>L. donovani </it>between animal reservoir hosts in eastern Sudan. The study was conducted in a zoonotic focus of visceral leishmaniasis in Dinder National Park, eastern Sudan, where previous work showed high infection rates of <it>L. donovani </it>in <it>P. orientalis</it>. Sand flies, captured by CDC traps were dissected and examined for infection with <it>Leishmania </it>parasites. Parasite isolates were subjected to <it>L. donovani </it>specific PCR. Field experiments were also carried out to compare efficiency of rodent baited and un-baited CDC traps in collection of <it>P. rodhaini </it>and determine its man-biting rate.</p> <p>Results</p> <p>Three female <it>P. rodhain</it>i were found infected with <it>Leishmania </it>parasites in an astonishingly small number of flies captured in three separate field trips. Two of these isolates were typed by molecular methods as <it>L. donovani</it>, while the third isolate was inoculated into a hamster that was subsequently lost. Although <it>P. rodhaini is </it>generally considered a rare species, results obtained in this study indicate that it can readily be captured by rodent-baited traps. Results of human landing collection showed that it rarely bites humans in the area.</p> <p>Conclusion</p> <p>It is concluded that <it>P. rodhaini </it>is a possible vector of <it>L. donovani </it>between animal reservoir hosts but is not responsible for infecting humans. It is suggested that the role of <it>P</it>. <it>rodhaini </it>in transmission of <it>L. donovani </it>in other zoonotic foci of visceral leishmaniasis in Africa should be re-examined.</p

    miRNAs in Newt Lens Regeneration: Specific Control of Proliferation and Evidence for miRNA Networking

    Get PDF
    Background: Lens regeneration in adult newts occurs via transdifferentiation of the pigment epithelial cells (PECs) of the dorsal iris. The same source of cells from the ventral iris is not able to undergo this process. In an attempt to understand this restriction we have studied in the past expression patterns of miRNAs. Among several miRNAs we have found that mir-148 shows an up-regulation in the ventral iris, while members of the let-7 family showed down-regulation in dorsal iris during dedifferentiation. Methodology/Principal Findings: We have performed gain- and loss-of–function experiments of mir-148 and let-7b in an attempt to delineate their function. We find that up-regulation of mir-148 caused significant decrease in the proliferation rates of ventral PECs only, while up-regulation of let-7b affected proliferation of both dorsal and ventral PECs. Neither miRNA was able to affect lens morphogenesis or induction. To further understand how this effect of miRNA up-regulation is mediated we examined global expression of miRNAs after up-regulation of mir148 and let-7b. Interestingly, we identified a novel level of mirRNA regulation, which might indicate that miRNAs are regulated as a network. Conclusion/Significance: The major conclusion is that different miRNAs can control proliferation in the dorsal or ventral iris possibly by a different mechanism. Of interest is that down-regulation of the let-7 family members has also been documented in other systems undergoing reprogramming, such as in stem cells or oocytes. This might indicate tha
    • …
    corecore