295 research outputs found

    A Gamma Interferon Independent Mechanism of CD4 T Cell Mediated Control of M. tuberculosis Infection in vivo

    Get PDF
    CD4 T cell deficiency or defective IFNγ signaling render humans and mice highly susceptible to Mycobacterium tuberculosis (Mtb) infection. The prevailing model is that Th1 CD4 T cells produce IFNγ to activate bactericidal effector mechanisms of infected macrophages. Here we test this model by directly interrogating the effector functions of Th1 CD4 T cells required to control Mtb in vivo. While Th1 CD4 T cells specific for the Mtb antigen ESAT-6 restrict in vivo Mtb growth, this inhibition is independent of IFNγ or TNF and does not require the perforin or FAS effector pathways. Adoptive transfer of Th17 CD4 T cells specific for ESAT-6 partially inhibited Mtb growth while Th2 CD4 T cells were largely ineffective. These results imply a previously unrecognized IFNγ/TNF independent pathway that efficiently controls Mtb and suggest that optimization of this alternative effector function may provide new therapeutic avenues to combat Mtb through vaccination

    An evidence-based framework for predicting the impact of differing autotroph-heterotroph thermal sensitivities on consumer-prey dynamics

    Get PDF
    Increased temperature accelerates vital rates, influencing microbial population and wider ecosystem dynamics, for example, the predicted increases in cyanobacterial blooms associated with global warming. However, heterotrophic and mixotrophic protists, which are dominant grazers of microalgae, may be more thermally sensitive than autotrophs, and thus prey could be suppressed as temperature rises. Theoretical and meta-analyses have begun to address this issue, but an appropriate framework linking experimental data with theory is lacking. Using ecophysiological data to develop a novel model structure, we provide the first validation of this thermal sensitivity hypothesis: increased temperature improves the consumer’s ability to control the autotrophic prey. Specifically, the model accounts for temperature effects on auto- and mixotrophs and ingestion, growth and mortality rates, using an ecologically and economically important system (cyanobacteria grazed by a mixotrophic flagellate). Once established, we show the model to be a good predictor of temperature impacts on consumer–prey dynamics by comparing simulations with microcosm observations. Then, through simulations, we indicate our conclusions remain valid, even with large changes in bottom-up factors (prey growth and carrying capacity). In conclusion, we show that rising temperature could, counterintuitively, reduce the propensity for microalgal blooms to occur and, critically, provide a novel model framework for needed, continued assessment

    Analysis of eight genes modulating interferon gamma and human genetic susceptibility to tuberculosis: a case-control association study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interferon gamma is a major macrophage-activating cytokine during infection with <it>Mycobacterium tuberculosis</it>, the causative pathogen of tuberculosis, and its role has been well established in animal models and in humans. This cytokine is produced by activated T helper 1 cells, which can best deal with intracellular pathogens such as <it>M. tuberculosis</it>. Based on the hypothesis that genes which regulate interferon gamma may influence tuberculosis susceptibility, we investigated polymorphisms in eight candidate genes.</p> <p>Methods</p> <p>Fifty-four polymorphisms in eight candidate genes were genotyped in over 800 tuberculosis cases and healthy controls in a population-based case-control association study in a South African population. Genotyping methods used included the SNPlex Genotyping System™, capillary electrophoresis of fluorescently labelled PCR products, TaqMan<sup>® </sup>SNP genotyping assays or the amplification mutation refraction system. Single polymorphisms as well as haplotypes of the variants were tested for association with TB using statistical analyses.</p> <p>Results</p> <p>A haplotype in interleukin 12B was nominally associated with tuberculosis (p = 0.02), but after permutation testing, done to assess the significance for the entire analysis, this was not globally significant. In addition a novel allele was found for the interleukin 12B D5S2941 microsatellite.</p> <p>Conclusions</p> <p>This study highlights the importance of using larger sample sizes when attempting validation of previously reported genetic associations. Initial studies may be false positives or may propose a stronger genetic effect than subsequently found to be the case.</p

    Cytokine Gene Polymorphisms across Tuberculosis Clinical Spectrum in Pakistani Patients

    Get PDF
    BACKGROUND: Pakistan ranks 7(th) globally in terms of tuberculosis (TB) disease burden (incidence 181/100000 pop./yr; prevalence of 329/pop./yr). Reports from different populations show variable associations of TB susceptibility and severity with cytokine gene polymorphisms. Tuberculosis clinical severity is multi-factorial and cytokines play a pivotal role in the modulation of disease severity. We have recently reported that the ratio of two key cytokines (IFNgamma and IL10) show significant correlation with the severity spectrum of tuberculosis. The objective of the current study was to analyze the frequency of cytokine gene polymorphisms linked to high and low responder phenotypes (IFNgamma +874 T(hi)-->A(lo) and IL10 -1082 G(lo)-->A(hi)) in tuberculosis patients. METHODS AND FINDINGS: STUDY GROUPS WERE STRATIFIED ACCORDING TO DISEASE SITE AS WELL AS DISEASE SEVERITY: Pulmonary N = 111 (Minimal, PMN = 19; Moderate, PMD = 63; Advance, PAD = 29); Extra-pulmonary N = 67 (Disseminated DTB = 20, Localized LTB = 47) and compared with healthy controls (TBNA = 188). Genotype analyses were carried out using amplification refractory mutation system-PCR (ARMS-PCR) and stimulated whole blood (WB) culture assay was used for assessing cytokine profiles. Our results suggest that the IFNgamma +874 TT genotype and T allele was overrepresented in PMN (p = 0.01) and PMD (p = 0.02). IFNgamma +874 TT in combination with IL10 GG(lo) genotypes showed the highest association (chi(2) = 6.66, OR = 6.06, 95% CI = 1.31-28.07, p = 0.01). IFNgamma AA(lo) on the other hand in combination with IL10 GG(lo) increased the risk of PAD (OR = 5.26; p = 0.005) and DTB (OR = 3.59; p = 0.045). CONCLUSION: These findings are consistent with the role of IL10 in reducing collateral tissue damage and the protective role of IFNgamma in limiting disease in the lung

    Adjuvant interferon gamma in patients with drug – resistant pulmonary tuberculosis: a pilot study

    Get PDF
    BACKGROUND: Tuberculosis (TB) is increasing in the world and drug-resistant (DR) disease beckons new treatments. METHODS: To evaluate the action of interferon (IFN) gamma as immunoadjuvant to chemotherapy on pulmonary DR-TB patients, a pilot, open label clinical trial was carried out in the Cuban reference ward for the management of this disease. The eight subjects existing in the country at the moment received, as in-patients, 1 × 10(6 )IU of recombinant human IFN gamma intramuscularly, daily for one month and then three times per week up to 6 months as adjuvant to the indicated chemotherapy, according to their antibiograms and WHO guidelines. Sputum samples collection for direct smear observation and culture as well as routine clinical and thorax radiography assessments were done monthly. RESULTS: Sputum smears and cultures became negative for acid-fast-bacilli before three months of treatment in all patients. Lesion size was reduced at the end of 6 months treatment; the lesions disappeared in one case. Clinical improvement was also evident; body mass index increased in general. Interferon gamma was well tolerated. Few adverse events were registered, mostly mild; fever and arthralgias prevailed. CONCLUSIONS: These data suggest that IFN gamma is useful and well tolerated as adjunctive therapy in patients with DR-TB. Further controlled clinical trials are encouraged

    Sh3pxd2b Mice Are a Model for Craniofacial Dysmorphology and Otitis Media

    Get PDF
    Craniofacial defects that occur through gene mutation during development increase vulnerability to eustachian tube dysfunction. These defects can lead to an increased incidence of otitis media. We examined the effects of a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) on the progression of otitis media and hearing impairment at various developmental stages. We found that all mice that had the Sh3pxd2bnee mutation went on to develop craniofacial dysmorphologies and subsequently otitis media, by as early as 11 days of age. We found noteworthy changes in cilia and goblet cells of the middle ear mucosa in Sh3pxd2bnee mutant mice using scanning electronic microscopy. By measuring craniofacial dimensions, we determined for the first time in an animal model that this mouse has altered eustachian tube morphology consistent with a more horizontal position of the eustachian tube. All mutants were found to have hearing impairment. Expression of TNF-α and TLR2, which correlates with inflammation in otitis media, was up-regulated in the ears of mutant mice when examined by immunohistochemistry and semi-quantitative RT-PCR. The mouse model with a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) mirrors craniofacial dysmorphology and otitis media in humans

    Role of 4-1BB Receptor in the Control Played by CD8+ T Cells on IFN-γ Production by Mycobacterium tuberculosis Antigen-Specific CD4+ T Cells

    Get PDF
    BACKGROUND: Antigen-specific IFN-gamma producing CD4(+) T cells are the main mediators of protection against Mycobacterium tuberculosis infection both under natural conditions and following vaccination. However these cells are responsible for lung damage and poor vaccine efficacy when not tightly controlled. Discovering new tools to control nonprotective antigen-specific IFN-gamma production without affecting protective IFN-gamma is a challenge in tuberculosis research. METHODS AND FINDINGS: Immunization with DNA encoding Ag85B, a candidate vaccine antigen of Mycobacterium tuberculosis, elicited in mice a low but protective CD4(+) T cell-mediated IFN-gamma response, while in mice primed with DNA and boosted with Ag85B protein a massive increase in IFN-gamma response was associated with loss of protection. Both protective and non-protective Ag85B-immunization generated antigen-specific CD8(+) T cells which suppressed IFN-gamma-secreting CD4(+) T cells. However, ex vivo ligation of 4-1BB, a member of TNF-receptor super-family, reduced the massive, non-protective IFN-gamma responses by CD4(+) T cells in protein-boosted mice without affecting the low protective IFN-gamma-secretion in mice immunized with DNA. This selective inhibition was due to the induction of 4-1BB exclusively on CD8(+) T cells of DNA-primed and protein-boosted mice following Ag85B protein stimulation. The 4-1BB-mediated IFN-gamma inhibition did not require soluble IL-10, TGF-beta, XCL-1 and MIP-1beta. In vivo Ag85B stimulation induced 4-1BB expression on CD8(+) T cells and in vivo 4-1BB ligation reduced the activation, IFN-gamma production and expansion of Ag85B-specific CD4(+) T cells of DNA-primed and protein-boosted mice. CONCLUSION/SIGNIFICANCE: Antigen-specific suppressor CD8(+) T cells are elicited through immunization with the mycobacterial antigen Ag85B. Ligation of 4-1BB receptor further enhanced their suppressive activity on IFN-gamma-secreting CD4(+) T cells. The selective expression of 4-1BB only on CD8(+) T cells in mice developing a massive, non-protective IFN-gamma response opens novel strategies for intervention in tuberculosis pathology and vaccination through T-cell co-stimulatory-based molecular targeting
    • …
    corecore