4 research outputs found

    Fat and Carbohydrate Interact to Potentiate Food Reward in Healthy Weight but Not in Overweight or Obesity

    Get PDF
    Prior work suggests that actual, but not estimated, energy density drives the reinforcing value of food and that energy from fat and carbohydrate can interact to potentiate reward. Here we sought to replicate these findings in an American sample and to determine if the effects are influenced by body mass index (BMI). Thirty participants with healthy weight (HW; BMI 21.92 ± 1.77; M ± SD) and 30 participants with overweight/obesity (OW/OB; BMI 29.42 ± 4.44) rated pictures of common American snacks in 120-kcal portions for liking, familiarity, frequency of consumption, expected satiety, healthiness, energy content, energy density, and price. Participants then completed an auction task where they bid for the opportunity to consume each food. Snacks contained either primarily carbohydrate, primarily fat, or roughly equal portions of fat and carbohydrate (combo). Replicating prior work, we found that participants with HW bid the most for combo foods in linear mixed model analyses. This effect was not observed among individuals with OW/OB. Additionally, in contrast with previous reports, our linear regression analyses revealed a negative relationship between the actual energy density of the snacks and bid amount that was mediated by food price. Our findings support altered macronutrient reinforcement in obesity and highlight potential influences of the food environment on the regulation of food reward

    The Addiction-Susceptibility TaqIA/Ankk1 Controls Reward and Metabolism Through D2 Receptor-Expressing Neurons

    Get PDF
    Background: A large body of evidence highlights the importance of genetic variants in the development of psychiatric and metabolic conditions. Among these, the TaqIA polymorphism is one of the most commonly studied in psychiatry. TaqIA is located in the gene that codes for the ankyrin repeat and kinase domain containing 1 kinase (Ankk1) near the dopamine D2 receptor (D2R) gene. Homozygous expression of the A1 allele correlates with a 30% to 40% reduction of striatal D2R, a typical feature of addiction, overeating, and other psychiatric pathologies. The mechanisms by which the variant influences dopamine signaling and behavior are unknown. Methods: Here, we used transgenic and viral-mediated strategies to reveal the role of Ankk1 in the regulation of activity and functions of the striatum. Results: We found that Ankk1 is preferentially enriched in striatal D2R-expressing neurons and that Ankk1 loss of function in the dorsal and ventral striatum leads to alteration in learning, impulsivity, and flexibility resembling endophenotypes described in A1 carriers. We also observed an unsuspected role of Ankk1 in striatal D2R-expressing neurons of the ventral striatum in the regulation of energy homeostasis and documented differential nutrient partitioning in humans with or without the A1 allele. Conclusions: Overall, our data demonstrate that the Ankk1 gene is necessary for the integrity of striatal functions and reveal a new role for Ankk1 in the regulation of body metabolism.Altérations du système de récompense dans l'anorexie mentaleRole du biostatus en acides gras polyinsaturés dans les troubles de contrôle exécuti
    corecore