526 research outputs found

    Can simple rules control development of a pioneer vertebrate neuronal network generating behavior?

    Get PDF
    How do the pioneer networks in the axial core of the vertebrate nervous system first develop? Fundamental to understanding any full-scale neuronal network is knowledge of the constituent neurons, their properties, synaptic interconnections, and normal activity. Our novel strategy uses basic developmental rules to generate model networks that retain individual neuron and synapse resolution and are capable of reproducing correct, whole animal responses. We apply our developmental strategy to young Xenopus tadpoles, whose brainstem and spinal cord share a core vertebrate plan, but at a tractable complexity. Following detailed anatomical and physiological measurements to complete a descriptive library of each type of spinal neuron, we build models of their axon growth controlled by simple chemical gradients and physical barriers. By adding dendrites and allowing probabilistic formation of synaptic connections, we reconstruct network connectivity among up to 2000 neurons. When the resulting "network" is populated by model neurons and synapses, with properties based on physiology, it can respond to sensory stimulation by mimicking tadpole swimming behavior. This functioning model represents the most complete reconstruction of a vertebrate neuronal network that can reproduce the complex, rhythmic behavior of a whole animal. The findings validate our novel developmental strategy for generating realistic networks with individual neuron- and synapse-level resolution. We use it to demonstrate how early functional neuronal connectivity and behavior may in life result from simple developmental "rules," which lay out a scaffold for the vertebrate CNS without specific neuron-to-neuron recognition

    Novel Branches of (0,2) Theories

    Full text link
    We show that recently proposed linear sigma models with torsion can be obtained from unconventional branches of conventional gauge theories. This observation puts models with log interactions on firm footing. If non-anomalous multiplets are integrated out, the resulting low-energy theory involves log interactions of neutral fields. For these cases, we find a sigma model geometry which is both non-toric and includes brane sources. These are heterotic sigma models with branes. Surprisingly, there are massive models with compact complex non-Kahler target spaces, which include brane/anti-brane sources. The simplest conformal models describe wrapped heterotic NS5-branes. We present examples of both types.Comment: 36 pages, LaTeX, 2 figures; typo in Appendix fixed; references added and additional minor change

    Universal time-dependent deformations of Schrodinger geometry

    Get PDF
    We investigate universal time-dependent exact deformations of Schrodinger geometry. We present 1) scale invariant but non-conformal deformation, 2) non-conformal but scale invariant deformation, and 3) both scale and conformal invariant deformation. All these solutions are universal in the sense that we could embed them in any supergravity constructions of the Schrodinger invariant geometry. We give a field theory interpretation of our time-dependent solutions. In particular, we argue that any time-dependent chemical potential can be treated exactly in our gravity dual approach.Comment: 24 pages, v2: references adde

    Stringy effects in black hole decay

    Get PDF
    We compute the low energy decay rates of near-extremal three(four) charge black holes in five(four) dimensional N=4 string theory to sub-leading order in the large charge approximation. This involves studying stringy corrections to scattering amplitudes of a scalar field off a black hole. We adapt and use recently developed techniques to compute such amplitudes as near-horizon quantities. We then compare this with the corresponding calculation in the microscopic configuration carrying the same charges as the black hole. We find perfect agreement between the microscopic and macroscopic calculations; in the cases we study, the zero energy limit of the scattering cross section is equal to four times the Wald entropy of the black hole.Comment: 32 page

    Indirect impacts of the COVID-19 pandemic at two tertiary neonatal units in Zimbabwe and Malawi: an interrupted time series analysis.

    Get PDF
    OBJECTIVES: To examine indirect impacts of the COVID-19 pandemic on neonatal care in low-income and middle-income countries. DESIGN: Interrupted time series analysis. SETTING: Two tertiary neonatal units in Harare, Zimbabwe and Lilongwe, Malawi. PARTICIPANTS: We included a total of 6800 neonates who were admitted to either neonatal unit from 1 June 2019 to 25 September 2020 (Zimbabwe: 3450; Malawi: 3350). We applied no specific exclusion criteria. INTERVENTIONS: The first cases of COVID-19 in each country (Zimbabwe: 20 March 2020; Malawi: 3 April 2020). PRIMARY OUTCOME MEASURES: Changes in the number of admissions, gestational age and birth weight, source of admission referrals, prevalence of neonatal encephalopathy, and overall mortality before and after the first cases of COVID-19. RESULTS: Admission numbers in Zimbabwe did not initially change after the first case of COVID-19 but fell by 48% during a nurses' strike (relative risk (RR) 0.52, 95% CI 0.41 to 0.66, p0.05). CONCLUSIONS: The indirect impacts of COVID-19 are context-specific. While our study provides vital evidence to inform health providers and policy-makers, national data are required to ascertain the true impacts of the pandemic on newborn health

    Duality Invariant Actions and Generalised Geometry

    Full text link
    We construct the non-linear realisation of the semi-direct product of E(11) and its first fundamental representation at lowest order and appropriate to spacetime dimensions four to seven. This leads to a non-linear realisation of the duality groups and introduces fields that depend on a generalised space which possess a generalised vielbein. We focus on the part of the generalised space on which the duality groups alone act and construct an invariant action.Comment: 59 pages (typos fixed and added comments

    Electroweak Symmetry Breaking in the DSSM

    Full text link
    We study the theoretical and phenomenological consequences of modifying the Kahler potential of the MSSM two Higgs doublet sector. Such modifications naturally arise when the Higgs sector mixes with a quasi-hidden conformal sector, as in some F-theory GUT models. In the Delta-deformed Supersymmetric Standard Model (DSSM), the Higgs fields are operators with non-trivial scaling dimension 1 < Delta < 2. The Kahler metric is singular at the origin of field space due to the presence of quasi-hidden sector states which get their mass from the Higgs vevs. The presence of these extra states leads to the fact that even as Delta approaches 1, the DSSM does not reduce to the MSSM. In particular, the Higgs can naturally be heavier than the W- and Z-bosons. Perturbative gauge coupling unification, a large top quark Yukawa, and consistency with precision electroweak can all be maintained for Delta close to unity. Moreover, such values of Delta can naturally be obtained in string-motivated constructions. The quasi-hidden sector generically contains states charged under SU(5)_GUT as well as gauge singlets, leading to a rich, albeit model-dependent, collider phenomenology.Comment: v3: 40 pages, 3 figures, references added, typos correcte

    Non-Abelian discrete gauge symmetries in 4d string models

    Full text link
    We study the realization of non-Abelian discrete gauge symmetries in 4d field theory and string theory compactifications. The underlying structure generalizes the Abelian case, and follows from the interplay between gaugings of non-Abelian isometries of the scalar manifold and field identifications making axion-like fields periodic. We present several classes of string constructions realizing non-Abelian discrete gauge symmetries. In particular, compactifications with torsion homology classes, where non-Abelianity arises microscopically from the Hanany-Witten effect, or compactifications with non-Abelian discrete isometry groups, like twisted tori. We finally focus on the more interesting case of magnetized branes in toroidal compactifications and quotients thereof (and their heterotic and intersecting duals), in which the non-Abelian discrete gauge symmetries imply powerful selection rules for Yukawa couplings of charged matter fields. In particular, in MSSM-like models they correspond to discrete flavour symmetries constraining the quark and lepton mass matrices, as we show in specific examples.Comment: 58 pages; minor typos corrected and references adde

    Superconformal symmetry and maximal supergravity in various dimensions

    Full text link
    In this paper we explore the relation between conformal superalgebras with 64 supercharges and maximal supergravity theories in three, four and six dimensions using twistorial oscillator techniques. The massless fields of N=8 supergravity in four dimensions were shown to fit into a CPT-self-conjugate doubleton supermultiplet of the conformal superalgebra SU(2,2|8) a long time ago. We show that the fields of maximal supergravity in three dimensions can similarly be fitted into the super singleton multiplet of the conformal superalgebra OSp(16|4,R), which is related to the doubleton supermultiplet of SU(2,2|8) by dimensional reduction. Moreover, we construct the ultra-short supermultiplet of the six-dimensional conformal superalgebra OSp(8*|8) and show that its component fields can be organized in an on-shell superfield. The ultra-short OSp(8*|8) multiplet reduces to the doubleton supermultiplet of SU(2,2|8) upon dimensional reduction. We discuss the possibility of a chiral maximal (4,0) six-dimensional supergravity theory with USp(8) R-symmetry that reduces to maximal supergravity in four dimensions and is different from six-dimensional (2,2) maximal supergravity, whose fields cannot be fitted into a unitary supermultiplet of a simple conformal superalgebra. Such an interacting theory would be the gravitational analog of the (2,0) theory.Comment: 54 pages, PDFLaTeX, Section 5 and several references added. Version accepted for publication in JHE

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.
    corecore