24,220 research outputs found
NEXUS Network: Connecting the Preceding and the Following in Dialogue Generation
Sequence-to-Sequence (seq2seq) models have become overwhelmingly popular in
building end-to-end trainable dialogue systems. Though highly efficient in
learning the backbone of human-computer communications, they suffer from the
problem of strongly favoring short generic responses. In this paper, we argue
that a good response should smoothly connect both the preceding dialogue
history and the following conversations. We strengthen this connection through
mutual information maximization. To sidestep the non-differentiability of
discrete natural language tokens, we introduce an auxiliary continuous code
space and map such code space to a learnable prior distribution for generation
purpose. Experiments on two dialogue datasets validate the effectiveness of our
model, where the generated responses are closely related to the dialogue
context and lead to more interactive conversations.Comment: Accepted by EMNLP201
Improving Variational Encoder-Decoders in Dialogue Generation
Variational encoder-decoders (VEDs) have shown promising results in dialogue
generation. However, the latent variable distributions are usually approximated
by a much simpler model than the powerful RNN structure used for encoding and
decoding, yielding the KL-vanishing problem and inconsistent training
objective. In this paper, we separate the training step into two phases: The
first phase learns to autoencode discrete texts into continuous embeddings,
from which the second phase learns to generalize latent representations by
reconstructing the encoded embedding. In this case, latent variables are
sampled by transforming Gaussian noise through multi-layer perceptrons and are
trained with a separate VED model, which has the potential of realizing a much
more flexible distribution. We compare our model with current popular models
and the experiment demonstrates substantial improvement in both metric-based
and human evaluations.Comment: Accepted by AAAI201
KN and KbarN Elastic Scattering in the Quark Potential Model
The KN and KbarN low-energy elastic scattering is consistently studied in the
framework of the QCD-inspired quark potential model. The model is composed of
the t-channel one-gluon exchange potential, the s-channel one-gluon exchange
potential and the harmonic oscillator confinement potential. By means of the
resonating group method, nonlocal effective interaction potentials for the KN
and KbarN systems are derived and used to calculate the KN and KbarN elastic
scattering phase shifts. By considering the effect of QCD renormalization, the
contribution of the color octet of the clusters (qqbar) and (qqq) and the
suppression of the spin-orbital coupling, the numerical results are in fairly
good agreement with the experimental data.Comment: 20 pages, 8 figure
Life fingerprints of nuclear reactions in the body of animals
Nuclear reactions are a very important natural phenomenon in the universe. On the earth, cosmic rays constantly cause nuclear reactions. High energy beams created by medical devices also induce nuclear reactions in the human body. The biological role of these nuclear reactions is unknown. Here we show that the in vivo biological systems are exquisite and sophisticated by nature in influence on nuclear reactions and in resistance to radical damage in the body of live animals. In this study, photonuclear reactions in the body of live or dead animals were induced with 50-MeV irradiation. Tissue nuclear reactions were detected by positron emission tomography (PET) imaging of the induced beta+ activity. We found the unique tissue "fingerprints" of beta+ (the tremendous difference in beta+ activities and tissue distribution patterns among the individuals) are imprinted in all live animals. Within any individual, the tissue "fingerprints" of 15O and 11C are also very different. When the animal dies, the tissue "fingerprints" are lost. The biochemical, rather than physical, mechanisms could play a critical role in the phenomenon of tissue "fingerprints". Radiolytic radical attack caused millions-fold increases in 15O and 11C activities via different biochemical mechanisms, i.e. radical-mediated hydroxylation and peroxidation respectively, and more importantly the bio-molecular functions (such as the chemical reactivity and the solvent accessibility to radicals). In practice biologically for example, radical attack can therefore be imaged in vivo in live animals and humans using PET for life science research, disease prevention, and personalized radiation therapy based on an individual's bio-molecular response to ionizing radiation
- …
