31,971 research outputs found
Second-harmonic generation in graded metallic films
We study the effective second-harmonic generation (SHG) susceptibility in
graded metallic films by invoking the local field effects exactly, and further
numerically demonstrate that the graded metallic films can serve as a novel
optical material for producing a broad structure in both the linear and SHG
response and an enhancement in the SHG signal.Comment: 10 pages, 2 EPS figures. Minor revision
The reaction at low energies in a chiral quark model
A chiral quark-model approach is extended to the study of the
scattering at low energies. The process of at
MeV/c (i.e. the center mass energy GeV) is
investigated. This approach is successful in describing the differential cross
sections and total cross section with the roles of the low-lying
resonances in shells clarified. The dominates the
reactions over the energy region considered here. Around MeV/c,
the is responsible for a strong resonant peak in the
cross section. The has obvious contributions around
MeV/c, while the contribution of is less
important in this energy region. The non-resonant background contributions,
i.e. -channel and -channel, also play important roles in the explanation
of the angular distributions due to amplitude interferences.Comment: 18 pages and 7 figure
Quantum Control of Light through an Atom-Molecule Dark State
We propose to use a quantized version of coherent two-color photoassociation
to realize a hybrid device for quantum control of light. The dynamical features
of this system are exhibited, including the slowing down or storage of light
and the molecular matter-wave solitons. This may indicate a hybrid
atom-molecule quantum device for storage and retrieve of optical information.Comment: with several detailed derivations in comparison with the published
version Phys. Rev. A 80, 025601 (2009)
Magnification Bias Corrections to Galaxy-Lensing Cross-Correlations
Galaxy-galaxy or galaxy-quasar lensing can provide important information on
the mass distribution in the Universe. It consists of correlating the lensing
signal (either shear or magnification) of a background galaxy/quasar sample
with the number density of a foreground galaxy sample. However, the foreground
galaxy density is inevitably altered by the magnification bias due to the mass
between the foreground and the observer, leading to a correction to the
observed galaxy-lensing signal. The aim of this paper is to quantify this
correction. The single most important determining factor is the foreground
redshift z: the correction is small if the foreground galaxies are at low
redshifts but can become non-negligible for sufficiently high redshifts. For
instance, we find that for the multipole l=1000, the correction is above
1%*(5s-2)/b for z<0.37, and above 5%*(5s-2)/b for z<0.67, where s is the number
count slope of the foreground sample, and b its galaxy bias. These
considerations are particularly important for geometrical measures, such as the
Jain and Taylor ratio or its generalization by Zhang et al. Assuming
(5s-2)/b=1, we find that the foreground redshift should be limited to z<0.45 in
order to avoid biasing the inferred dark energy equation of state w by more
than 5%, and that even for a low foreground redshift (< 0.45), the background
samples must be well separated from the foreground to avoid incurring a bias of
similar magnitude. Lastly, we briefly comment on the possibility of obtaining
these geometrical measures without using galaxy shapes, using instead
magnification bias itself.Comment: 10 pages, 7 figures; v2: minor revisions, as accepted for publication
in Physical Review
- …
