31,971 research outputs found

    Second-harmonic generation in graded metallic films

    Full text link
    We study the effective second-harmonic generation (SHG) susceptibility in graded metallic films by invoking the local field effects exactly, and further numerically demonstrate that the graded metallic films can serve as a novel optical material for producing a broad structure in both the linear and SHG response and an enhancement in the SHG signal.Comment: 10 pages, 2 EPS figures. Minor revision

    The KpΣ0π0K^-p\to \Sigma^0\pi^0 reaction at low energies in a chiral quark model

    Full text link
    A chiral quark-model approach is extended to the study of the KˉN\bar{K}N scattering at low energies. The process of KpΣ0π0K^-p\to \Sigma^0\pi^0 at PK800P_K\lesssim 800 MeV/c (i.e. the center mass energy W1.7W\lesssim 1.7 GeV) is investigated. This approach is successful in describing the differential cross sections and total cross section with the roles of the low-lying Λ\Lambda resonances in n=1n=1 shells clarified. The Λ(1405)S01\Lambda(1405)S_{01} dominates the reactions over the energy region considered here. Around PK400P_K\simeq 400 MeV/c, the Λ(1520)D03\Lambda(1520)D_{03} is responsible for a strong resonant peak in the cross section. The Λ(1670)S01\Lambda(1670)S_{01} has obvious contributions around PK=750P_K=750 MeV/c, while the contribution of Λ(1690)D03\Lambda(1690)D_{03} is less important in this energy region. The non-resonant background contributions, i.e. uu-channel and tt-channel, also play important roles in the explanation of the angular distributions due to amplitude interferences.Comment: 18 pages and 7 figure

    Quantum Control of Light through an Atom-Molecule Dark State

    Full text link
    We propose to use a quantized version of coherent two-color photoassociation to realize a hybrid device for quantum control of light. The dynamical features of this system are exhibited, including the slowing down or storage of light and the molecular matter-wave solitons. This may indicate a hybrid atom-molecule quantum device for storage and retrieve of optical information.Comment: with several detailed derivations in comparison with the published version Phys. Rev. A 80, 025601 (2009)

    Magnification Bias Corrections to Galaxy-Lensing Cross-Correlations

    Full text link
    Galaxy-galaxy or galaxy-quasar lensing can provide important information on the mass distribution in the Universe. It consists of correlating the lensing signal (either shear or magnification) of a background galaxy/quasar sample with the number density of a foreground galaxy sample. However, the foreground galaxy density is inevitably altered by the magnification bias due to the mass between the foreground and the observer, leading to a correction to the observed galaxy-lensing signal. The aim of this paper is to quantify this correction. The single most important determining factor is the foreground redshift z: the correction is small if the foreground galaxies are at low redshifts but can become non-negligible for sufficiently high redshifts. For instance, we find that for the multipole l=1000, the correction is above 1%*(5s-2)/b for z<0.37, and above 5%*(5s-2)/b for z<0.67, where s is the number count slope of the foreground sample, and b its galaxy bias. These considerations are particularly important for geometrical measures, such as the Jain and Taylor ratio or its generalization by Zhang et al. Assuming (5s-2)/b=1, we find that the foreground redshift should be limited to z<0.45 in order to avoid biasing the inferred dark energy equation of state w by more than 5%, and that even for a low foreground redshift (< 0.45), the background samples must be well separated from the foreground to avoid incurring a bias of similar magnitude. Lastly, we briefly comment on the possibility of obtaining these geometrical measures without using galaxy shapes, using instead magnification bias itself.Comment: 10 pages, 7 figures; v2: minor revisions, as accepted for publication in Physical Review
    corecore