2,681 research outputs found

    Increasing thermal stress for tropical coral reefs: 1871-2017

    Get PDF
    Tropical corals live close to their upper thermal limit making them vulnerable to unusually warm summer sea temperatures. The resulting thermal stress can lead to breakdown of the coral-algal symbiosis, essential for the functioning of reefs, and cause coral bleaching. Mass coral bleaching is a modern phenomenon associated with increases in reef temperatures due to recent global warming. Widespread bleaching has typically occurred during El Nino events. We examine the historical level of stress for 100 coral reef locations with robust bleaching histories. The level of thermal stress (based on a degree heating month index, DHMI) at these locations during the 2015-2016 El Nino was unprecedented over the period 1871-2017 and exceeded that of the strong 1997-1998 El Nino. The DHMI was also 5 times the level of thermal stress associated with the 'pre-industrial', 1877-1878, El Nino. Coral reefs have, therefore, already shown their vulnerability to the modest (similar to 0.92 degrees C) global warming that has occurred to date. Estimates of future levels of thermal stress suggest that even the optimistic 1.5 degrees C Paris Agreement target is insufficient to prevent more frequent mass bleaching events for the world's reefs. Effectively, reefs of the future will not be the same as those of the past

    Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene

    Get PDF
    Branch points and flexures in the high pressure arterial system have long been recognized as sites of unusually high turbulence and consequent stress in humans are foci for atherosclerotic lesions. We show that mice that are homozygous for a null mutation in the gene encoding an endogenous antiinflammatory cytokine, interleukin 1 receptor antagonist (IL-1ra), develop lethal arterial inflammation involving branch points and flexures of the aorta and its primary and secondary branches. We observe massive transmural infiltration of neutrophils, macrophages, and CD4(+) T cells. Animals appear to die from vessel wall collapse, stenosis, and organ infarction or from hemorrhage from ruptured aneurysms. Heterozygotes do not die from arteritis within a year of birth but do develop small lesions, which suggests that a reduced level of IL-1ra is insufficient to fully control inflammation in arteries. Our results demonstrate a surprisingly specific role for IL-1ra in the control of spontaneous inflammation in constitutively stressed artery walls, suggesting that expression of IL-1 is likely to have a significant role in signaling artery wall damage

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    Evolution of circular, non-equatorial orbits of Kerr black holes due to gravitational-wave emission: II. Inspiral trajectories and gravitational waveforms

    Get PDF
    The inspiral of a ``small'' (μ∼1−100M⊙\mu \sim 1-100 M_\odot) compact body into a ``large'' (M∼105−7M⊙M \sim 10^{5-7} M_\odot) black hole is a key source of gravitational radiation for the space-based gravitational-wave observatory LISA. The waves from such inspirals will probe the extreme strong-field nature of the Kerr metric. In this paper, I investigate the properties of a restricted family of such inspirals (the inspiral of circular, inclined orbits) with an eye toward understanding observable properties of the gravitational waves that they generate. Using results previously presented to calculate the effects of radiation reaction, I assemble the inspiral trajectories (assuming that radiation reacts adiabatically, so that over short timescales the trajectory is approximately geodesic) and calculate the wave generated as the compact body spirals in. I do this analysis for several black hole spins, sampling a range that should be indicative of what spins we will encounter in nature. The spin has a very strong impact on the waveform. In particular, when the hole rotates very rapidly, tidal coupling between the inspiraling body and the event horizon has a very strong influence on the inspiral time scale, which in turn has a big impact on the gravitational wave phasing. The gravitational waves themselves are very usefully described as ``multi-voice chirps'': the wave is a sum of ``voices'', each corresponding to a different harmonic of the fundamental orbital frequencies. Each voice has a rather simple phase evolution. Searching for extreme mass ratio inspirals voice-by-voice may be more effective than searching for the summed waveform all at once.Comment: 15 pages, 11 figures, accepted for publication in PRD. This version incorporates referee's comments, and is much less verbos

    Trends in sexually transmitted infections in general practice 1990-2000: population based study using data from the UK general practice research database

    Get PDF
    Objective: To describe the contribution of primary care to the diagnosis and management of sexually transmitted infections in the United Kingdom, 1990-2000, in the context of increasing incidence of infections in genitourinary medicine clinics. Design: Population based study. Setting: UK primary care. Participants: Patients registered in the UK general practice research database. Main outcome measures: Incidence of diagnosed sexually transmitted infections in primary care and estimation of the proportion of major such infections diagnosed in primary care. Results: An estimated 23.0% of chlamydia cases in women but only 5.3% in men were diagnosed and treated in primary care during 1998-2000, along with 49.2% cases of non-specific urethritis and urethral discharge in men and 5.7% cases of gonorrhoea in women and 2.9% in men. Rates of diagnosis in primary care rose substantially in the late 1990s. Conclusions: A substantial and increasing number of sexually transmitted infections are diagnosed and treated in primary care in the United Kingdom, with sex ratios differing from those in genitourinary medicine clinics. Large numbers of men are treated in primary care for presumptive sexually transmitted infections

    Comparison of CT ventilation imaging and hyperpolarised gas MRI: effects of breathing manoeuvre.

    Get PDF
    Image registration of lung CT images acquired at different inflation levels has been proposed as a surrogate method to map lung 'ventilation'. Prior to clinical use, it is important to understand how this technique compares with direct ventilation imaging modalities such as hyperpolarised gas MRI. However, variations in lung inflation level have been shown to affect regional ventilation distributions. Therefore, the aim of this study was to evaluate the impact of lung inflation levels when comparing CT ventilation imaging to ventilation from 3He-MRI.
 
 7 asthma patients underwent breath-hold CT at total lung capacity (TLC) and functional residual capacity (FRC). 3He-MRI and a same-breath 1H-MRI were acquired at FRC+1L and TLC. Percentage ventilated volumes (%VVs) were calculated for FRC+1L and TLC 3He-MRI. TLC-CT and registered FRC-CT were used to compute a surrogate ventilation map from voxel-wise intensity differences in Hounsfield unit values, which was thresholded at the 10th and 20th percentiles. For direct comparison of CT and 3He-MRI ventilation, FRC+1L and TLC 3He-MRI were registered to TLC-CT indirectly via the corresponding same-breath 1H-MRI data. For 3He-MRI and CT ventilation comparison, Dice similarity coefficients (DSCs) between the binary segmentations were computed.
 
 The median (range) of %VVs for FRC+1L and TLC 3He-MRI were 90.5 (54.9-93.6) and 91.8 (67.8-96.2), respectively (p=0.018). For MRI versus CT ventilation comparison, statistically significant improvements in DSCs were observed for TLC 3He MRI when compared with FRC+1L, with median (range) values of 0.93 (0.86-0.93) and 0.86 (0.68-0.92), respectively (p=0.017), for the 10-100th percentile and 0.87 (0.83-0.88) and 0.81 (0.66-0.87), respectively (p=0.027), for the 20-100th percentile.
 
 Correlation of CT ventilation imaging and hyperpolarised gas MRI is sensitive to lung inflation level. For ventilation maps derived from CT acquired at FRC and TLC, a higher correlation with gas ventilation MRI can be achieved if the MRI is acquired at TLC. &#13

    A Deficiency Problem of the Least Squares Finite Element Method for Solving Radiative Transfer in Strongly Inhomogeneous Media

    Full text link
    The accuracy and stability of the least squares finite element method (LSFEM) and the Galerkin finite element method (GFEM) for solving radiative transfer in homogeneous and inhomogeneous media are studied theoretically via a frequency domain technique. The theoretical result confirms the traditional understanding of the superior stability of the LSFEM as compared to the GFEM. However, it is demonstrated numerically and proved theoretically that the LSFEM will suffer a deficiency problem for solving radiative transfer in media with strong inhomogeneity. This deficiency problem of the LSFEM will cause a severe accuracy degradation, which compromises too much of the performance of the LSFEM and makes it not a good choice to solve radiative transfer in strongly inhomogeneous media. It is also theoretically proved that the LSFEM is equivalent to a second order form of radiative transfer equation discretized by the central difference scheme

    Patterns of regional lung physiology in cystic fibrosis using ventilation magnetic resonance imaging and multiple-breath washout

    Get PDF
    Hyperpolarised helium-3 (3He) ventilation magnetic resonance imaging (MRI) and multiple-breath washout (MBW) are sensitive methods for detecting lung disease in cystic fibrosis (CF). We aimed to explore their relationship across a broad range of CF disease severity and patient age, as well as assess the effect of inhaled lung volume on ventilation distribution.32 children and adults with CF underwent MBW and 3He-MRI at a lung volume of end-inspiratory tidal volume (EIVT). In addition, 28 patients performed 3He-MRI at total lung capacity. 3He-MRI scans were quantitatively analysed for ventilation defect percentage (VDP), ventilation heterogeneity index (VHI) and the number and size of individual contiguous ventilation defects. From MBW, the lung clearance index, convection-dependent ventilation heterogeneity (Scond) and convection-diffusion-dependent ventilation heterogeneity (Sacin) were calculated.VDP and VHI at EIVT strongly correlated with lung clearance index (r=0.89 and r=0.88, respectively), Sacin (r=0.84 and r=0.82, respectively) and forced expiratory volume in 1 s (FEV1) (r=-0.79 and r=-0.78, respectively). Two distinct 3He-MRI patterns were highlighted: patients with abnormal FEV1 had significantly (p<0.001) larger, but fewer, contiguous defects than those with normal FEV1, who tended to have numerous small volume defects. These two MRI patterns were delineated by a VDP of ∼10%. At total lung capacity, when compared to EIVT, VDP and VHI reduced in all subjects (p<0.001), demonstrating improved ventilation distribution and regions of volume-reversible and nonreversible ventilation abnormalities
    • …
    corecore