329 research outputs found

    Effect of double layers on magnetosphere-ionosphere coupling

    Get PDF
    The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures

    Modeling radiation belt radial diffusion in ULF wave fields: 2. Estimating rates of radial diffusion using combined MHD and particle codes

    Get PDF
    [1] Quantifying radial transport of radiation belt electrons in ULF wave fields is essential for understanding the variability of the trapped relativistic electrons. To estimate the radial diffusion coefficients (DLL), we follow MeV electrons in realistic magnetospheric configurations and wave fields calculated from a global MHD code. We create idealized pressure-driven MHD simulations for controlled solar wind velocities (hereafter referred to as pressure-driven Vx simulations) with ULF waves that are comparable to GOES data under similar conditions, by driving the MHD code with synthetic pressure profiles that mimic the pressure variations of a particular solar wind velocity. The ULF wave amplitude, in both magnetic and electric fields, increases at larger radial distance and during intervals with higher solar wind velocity and pressure fluctuations. To calculate DLL as a function of solar wind velocity (Vx = 400 and 600 km/s), we follow 90 degree pitch angle electrons in magnetic and electric fields of the pressure-driven Vx simulations. DLL is higher at larger radial distance and for the case with higher solar wind velocity and pressure variations. Our simulated DLL values are relatively small compared to previous studies which used larger wave fields in their estimations. For comparison, we scale our DLL values to match the wave amplitudes of the previous studies with those of the idealized MHD simulations. After the scaling, our DLL values for Vx = 600 km/s are comparable to theDLL values derived from Polar measurements during nonstorm intervals. This demonstrates the use of MHD models to quantify the effect of pressure-driven ULF waves on radiation belt electrons and thus to differentiate the radial diffusive process from other mechanisms

    The excitation of the far ultraviolet electroglow emissions on Uranus, Saturn, and Jupiter

    Get PDF
    We propose that the diffuse FUV emissions of H and H_2 in excess of photoelectron excitation observed from the sunlit atmospheres of Uranus, Saturn, and Jupiter are produced by electric field acceleration of photoelectrons and ions locally in the upper atmospheres. This in situ acceleration is required to satisfy the many observational constraints on the altitude distribution, exciting particle energy, and total input energy requirements of the electroglow mechanism. We further suggest that a primary mechanism leading to this acceleration is an ionospheric dynamo, which is created in the same manner as the Earth's dynamo. The calculated altitude of charge separation by the neutral wind drag on ions across magnetic field lines is consistent with the observed peaks in electroglow emissions from the Voyager ultraviolet spectrometer limb scan data on both Saturn (near the homopause) and Uranus (just above the homopause). This dynamo action therefore appears to initiate the acceleration process, which must have the form of field-aligned potentials to accelerate the magnetized electrons. We propose that these field-aligned potentials are due to anomalous resistivity, which results from sufficiently high field-aligned currents in the ionosphere to generate plasma instabilities and therefore runaway electrons and ions above some critical lower initial energy. There are multiple candidate processes for inducing these currents, including polarization in the equivalent F regions and inner magnetospheric convection, and each of these processes should exhibit latitudinal structure. The acceleration of low-energy electrons in an H_2 atmosphere preferentially results in FUV radiation and further ionization, whereas electron acceleration in a nitrogen/oxygen atmosphere such as the Earth' is dominated by elastic scattering and thus results in electric currents. Individual electron and proton collisions with H_2 molecules will result in excitation, ionization, and heating, so that considerable enhancement of the ionospheric density and heating of the upper atmosphere will accompany the FUV emission

    Genetic and environmental risk for major depression in African-American and European-American women

    Get PDF
    It is unknown whether there are racial differences in the heritability of major depressive disorder (MDD) because most psychiatric genetic studies have been conducted in samples comprised largely of white non-Hispanics. To examine potential differences between African-American (AA) and European-American (EA) young adult women in (1) DSM-IV MDD prevalence, symptomatology and risk factors and (2) genetic and/or environmental liability to MDD, we analyzed data from a large, population representative sample of twins ascertained from birth records (n= 550 AA and n=3226 EA female twins) aged 18–28 years at the time of MDD assessment by semi-structured psychiatric interview. AA women were more likely to have MDD risk factors; however, there were no significant differences in lifetime MDD prevalence between AA and EA women after adjusting for covariates (Odds Ratio = 0.88, 95% confidence interval: 0.67–1.15 ). Most MDD risk factors identified among AAs were also associated with MDD at similar magnitudes among EAs. Although the MDD heritability point estimate was higher among AA than EA women in a model with paths estimated separately by race (56%, 95% CI: 29%–78% vs. 41%, 95% CI: 29%–52%), the best-fitting model was one in which additive genetic and nonshared environmental paths for AA and EA women were constrained to be equal (A = 43%, 33%–53% and E = 57%, 47%–67%). Despite a marked elevation in the prevalence of environmental risk exposures related to MDD among AA women, there were no significant differences in lifetime prevalence or heritability of MDD between AA and EA young women

    Sunburns and Sun Protection Behaviors among Male Hispanic Outdoor Day Laborers

    Get PDF
    Individuals who work outside are at increased risk for skin cancer due to excessive exposure to ultraviolet (UV) radiation. Little is known about UV exposures and sun safety practices of outdoor day laborers, who are disproportionately Hispanic. This study identified the correlates of sunburn and sun protection behaviors in a sample of male, Hispanic day laborers (n = 175). More than half of the participants (54.9%) experienced one or more sunburns when working during the past summer, and 62.9% reported having one or more symptoms of heat illness. The frequency of engaging in sun protection behaviors was suboptimal, including sunglasses use (M = 2.68, SD = 1.71), staying in the shade (M = 2.30, SD = 0.94), wearing sunscreen (M = 2.10, SD = 1.39), and wearing a wide-brimmed hat (M = 1.75, SD = 1.32), based on a 5-point scale (1 = never; 5 = always). Lower education level, higher levels of skin sensitivity to the sun, any symptom of heat illness, fewer barriers to wearing a wide-brimmed hat, and not wearing a wide-brimmed hat were associated with a greater number of sunburns. Factors associated with each sun protection behavior varied. Implications and directions for future research are discussed

    Filling Key Gaps in Population and Community Ecology

    Get PDF
    We propose research to fill key gaps in the areas of population and community ecology, based on a National Science Foundation workshop identifying funding priorities for the next 5–10 years. Our vision for the near future of ecology focuses on three core areas: predicting the strength and context-dependence of species interactions across multiple scales; identifying the importance of feedbacks from individual interactions to ecosystem dynamics; and linking pattern with process to understand species coexistence. We outline a combination of theory development and explicit, realistic tests of hypotheses needed to advance population and community ecology
    • …
    corecore