9,287 research outputs found

    The Global Baroclinic Instability in Accretion Disks. II: Local Linear Analysis

    Full text link
    This paper contains a local linear stability analysis for accretion disks under the influence of a global radial entropy gradient beta = - d log T / d log r for constant surface density. Numerical simulations suggested the existence of an instability in two- and three-dimensional models of the solar nebula. The present paper tries to clarify, quantify, and explain such a global baroclinic instability for two-dimensional flat accretion disk models. As a result linear theory predicts a transient linear instability that will amplify perturbations only for a limited time or up to a certain finite amplification. This can be understood as a result of the growth time of the instability being longer than the shear time which destroys the modes which are able to grow. So only non-linear effects can lead to a relevant amplification. Nevertheless, a lower limit on the entropy gradient ~beta = 0.22 for the transient linear instability is derived, which can be tested in future non-linear simulations. This would help to explain the observed instability in numerical simulations as an ultimate result of the transient linear instability, i.e. the Global Baroclinic Instability.Comment: 35 pages, 11 figures; ApJ in pres

    Issues for further study

    Get PDF
    The topics covered include the following: a lunar outpost map, lunar resource utilization, asteroid resource utilization, space energy utilization, and space 'real estate' utilization

    Complexity and growth for polygonal billiards

    Get PDF
    We establish a relationship between the word complexity and the number of generalized diagonals for a polygonal billiard. We conclude that in the rational case the complexity function has cubic upper and lower bounds. In the tiling case the complexity has cubic asymptotic growth.Comment: 12 pages, 4 figure

    Recurrence in generic staircases

    Full text link
    The straight-line flow on almost every staircase and on almost every square tiled staircase is recurrent. For almost every square tiled staircase the set of periodic orbits is dense in the phase space

    Surface properties of ocean fronts

    Get PDF
    Background information on oceanic fronts is presented and the results of several models which were developed to study the dynamics of oceanic fronts and their effects on various surface properties are described. The details of the four numerical models used in these studies are given in separate appendices which contain all of the physical equations, program documentation and running instructions for the models
    corecore