77 research outputs found

    The Structure of Jupiter, Saturn, and Exoplanets: Key Questions for High-Pressure Experiments

    Full text link
    We give an overview of our current understanding of the structure of gas giant planets, from Jupiter and Saturn to extrasolar giant planets. We focus on addressing what high-pressure laboratory experiments on hydrogen and helium can help to elucidate about the structure of these planets.Comment: Invited contribution to proceedings of High Energy Density Laboratory Astrophysics, 6. Accepted to Astrophysics & Space Science. 12 page

    Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model

    Get PDF
    The physics of a two-component cold fermi gas is now frequently addressed in laboratories. Usually this is done for large samples of tens to hundreds of thousands of particles. However, it is now possible to produce few-body systems (1-100 particles) in very tight traps where the shell structure of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method by estimating the pairing correlations in a small two-component Fermi system with moderate-to-strong short-range two-body interactions in a three-dimensional harmonic external trapping potential.Comment: 13 pages, 3 figures. Final versio
    corecore