799 research outputs found

    Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides

    Full text link
    The iron pnictide and chalcogenide compounds are a subject of intensive investigations due to their high temperature superconductivity.\cite{a-LaFeAsO} They all share the same structure, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and Tc_c. Many theoretical techniques have been applied to individual compounds but no consistent description of the trends is available \cite{np-review}. We carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. We show that the nature of both states is well described by our method and the trends in all the calculated physical properties such as the ordered moments, effective masses and Fermi surfaces are in good agreement with experiments across the compounds. The variation of these properties can be traced to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results provide a natural explanation of the strongly Fermi surface dependent superconducting gaps observed in experiments\cite{Ding}. We propose a specific optimization of the crystal structure to look for higher Tc_c superconductors.Comment: 5 pages, 3 figures with a 5-page supplementary materia

    Cassiterite oxygen isotopes in magmatic-hydrothermal systems: in situ microanalysis, fractionation factor, and applications

    Get PDF
    Tin and tungsten are important metals for the industrializing society. Deciphering the origin and evolution of hydrothermal fluids responsible for their formation is critical to underpin genetic models of ore formation. Traditional approaches obtain isotopic information mainly from bulk analysis of both ore and gangue minerals, or less frequently from in situ analysis of gangue minerals, which either bear inherited complexities and uncertainties or are indirect constraints. Hence, directly obtaining isotopic information from ore minerals such as cassiterite by in situ techniques is warranted. However, this has been hampered by challenges from both analytical and applicational aspects. In this study, we first demonstrate a lack of crystallographic orientation effects during cassiterite ion microprobe oxygen isotope analysis. Along with our newly developed matrix-matched reference material, the Yongde-Cst, which has a recommended δ18O value of 1.36 ± 0.16‰ (VSMOW) as defined by gas source isotope ratio mass spectrometry, in situ oxygen isotope analysis of cassiterite now is possible. We further refine the oxygen isotope fractionation (1000 ln α) for quartz-cassiterite by first-principles calculations, which is given by the equation of 1.259 × 106/T2 + 8.15 × 103/T − 4.72 (T is temperature in Kelvin). The 1000 ln α for quartz-cassiterite has a sensitive response to temperature, and makes cassiterite-quartz an excellent mineral pair in oxygen isotope thermometry, as described by the equation of T (℃) = 2427 × (δ18Oqtz − δ18Ocst)−0.4326 − 492.4. Using the well-established 1000 ln α of quartz-water, 1000 ln α of cassiterite-water is derived as 2.941 × 106/T2 − 11.45 × 103/T + 4.72 (T in Kelvin), which shows a weak response to temperature. This makes cassiterite an ideal mineral from which to derive δ18O of fluids as robust temperature estimates are no longer a prerequisite. We have applied oxygen isotope analysis to cassiterite samples from six Sn(-W) deposits in China. The results show considerable variability in δ18O values both within a single deposit and among studied deposits. Combining the δ18O of cassiterite samples and the equilibrium oxygen isotope fractionation, we find that the δ18O values of ore-forming fluids show a strong magmatic affinity with variable but mostly no to low degree involvements (~0-10%) of meteoric water, hence our results invite a reassessment on the extent and role of meteoric water in Sn-W mineralization. This study demonstrates that in situ oxygen isotope analysis of cassiterite is a promising tool to refine sources of ore-forming fluids, and to decode hydrothermal dynamics controlling tin and tungsten mineralization

    Magnetism and Charge Dynamics in Iron Pnictides

    Full text link
    In a wide variety of materials, such as copper oxides, heavy fermions, organic salts, and the recently discovered iron pnictides, superconductivity is found in close proximity to a magnetically ordered state. The character of the proximate magnetic phase is thus believed to be crucial for understanding the differences between the various families of unconventional superconductors and the mechanism of superconductivity. Unlike the AFM order in cuprates, the nature of the magnetism and of the underlying electronic state in the iron pnictide superconductors is not well understood. Neither density functional theory nor models based on atomic physics and superexchange, account for the small size of the magnetic moment. Many low energy probes such as transport, STM and ARPES measured strong anisotropy of the electronic states akin to the nematic order in a liquid crystal, but there is no consensus on its physical origin, and a three dimensional picture of electronic states and its relations to the optical conductivity in the magnetic state is lacking. Using a first principles approach, we obtained the experimentally observed magnetic moment, optical conductivity, and the anisotropy of the electronic states. The theory connects ARPES, which measures one particle electronic states, optical spectroscopy, probing the particle hole excitations of the solid and neutron scattering which measures the magnetic moment. We predict a manifestation of the anisotropy in the optical conductivity, and we show that the magnetic phase arises from the paramagnetic phase by a large gain of the Hund's rule coupling energy and a smaller loss of kinetic energy, indicating that iron pnictides represent a new class of compounds where the nature of magnetism is intermediate between the spin density wave of almost independent particles, and the antiferromagnetic state of local moments.Comment: 4+ pages with additional one-page supplementary materia

    Rectifying properties and colossal magnetoresistance in La0.9Hf0.1MnO3 /Nb-0.7 wt%-doped SrTiO3 heterojunction

    Get PDF
    SPIE Proceedings v. 9068 entitled: Technology of Thin Film & Application of Thin FilmA heterojunction with good rectifying properties in a wide temperature range from 20 K to 300 K was fabricated simply by depositing an as-grown La0.9Hf0.1MnO3 (LHMO) film on a commercial 0.7 wt% Nb-doped SrTiO3 single crystal substrate using pulsed laser deposition technique. The current-voltage behavior of the LHMO/STON is measured under applied magnetic fields varying between 0 and 5 T. The heterojunction shows a remarkable magnetoresistance which depends on both the temperature and bias voltages. The sign of the magnetoresistance as function of temperature at either forward or reverse bias voltage is extensively studied by the filling of electrons in the eg and t2g band. The good rectifying behaviors, the magnetic tunable properties and the maximum magnetoresistance obtained at room temperature make this simple heterojunction promising for practical applications. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personalLink_to_subscribed_fulltex

    Lignin biomarkers as tracers of mercury sources in lakes water column

    Get PDF
    This study presents the role of specific terrigenous organic compounds as important vectors of mercury (Hg) transported from watersheds to lakes of the Canadian boreal forest. In order to differentiate the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signatures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous plants, this approach can give a non equivocal picture of the watershed inputs to the lakes. Moreover, it allows a characterization of the source of OM and its state of degradation. The water column of six lakes from the Canadian Shield was sampled monthly between June and September 2005. Lake total dissolved Hg concentrations and Lambda were positively correlated, meaning that Hg and ligneous inputs are linked (dissolved OM r2 = 0.62, p\0.0001; particulate OM r2 = 0.76, p\0.0001). Ratios of P/(V ? S) and 3,5-Bd/V from both dissolved OM and particulate OM of the water column suggest an inverse relationship between the progressive state of pedogenesis and maturation of the OM in soil before entering the lake, and the Hg concentrations in the water column. No relation was found between Hg levels in the lakes and the watershed flora composition—angiosperm versus gymnosperm or woody versus non-woody compounds. This study has significant implications for watershed management of ecosystems since limiting fresh terrestrial OM inputs should reduce Hg inputs to the aquatic systems. This is particularly the case for largescale land-use impacts, such as deforestation, agriculture and urbanization, associated to large quantities of soil OM being transferred to aquatic systems

    Selective oxidation of propane to acrolein over MoPO/SiO2 catalyst

    Get PDF
    The selective oxidation of propane to acrolein over the MoPO/SiO2 catalyst has been studied. MoO/SiO2 exhibits only activity for the oxidative dehydrogenation of propane to propene. The propane conversion and acrolein selectivity are evidently increased by the addition of P to MoO/SiO2. The catalysts were characterized by XRD, Raman spectroscopy, H-2-TPR, NH3-TPD and FT-IR spectroscopy. The XRD and Raman results show that crystalline MoO3 is dominant on the silica-supported molybdenum oxide catalyst, while polymolybdate species are present on P-doped catalysts. Compared to the P-O-P stretching vibration at 905 cm(-1) in PO/SiO2, the P-doped sample exhibits the Raman band of the asymmetric PO4 stretching mode at 1085 cm(-1). Therefore, Mo-O-P bonds are likely to be formed on the P-doped catalyst, and the active sites are isolated by the phosphorus in MOPO/SiO2, preventing the growth of crystallized MoO3. These changes in structure and thus the improvement in reducibility of the MoPO/SiO2 catalyst may be responsible for the increase in propane conversion and acrolein selectivity. Furthermore, the results of FT-IR spectroscopy of pyridine adsorption and NH3-TPD show that both Bronsted and Lewis acid sites on the surface of the P-doped sample are stronger than those on MoO/SiO2. These suggest that the addition of phosphorus modifies the surface structure and enhances the surface acidity of the supported catalyst, thus improving the behavior of the catalyst
    corecore