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Abstract
As a kind of dependent random variables, the widely orthant dependent random
variables, or WOD for short, have a very important place in dependence structures for
the intricate properties. And so its behavior and properties in different statistical
models will be a major part in our research interest. Based on WOD errors, the large
deviation results of the least squares estimator in the nonlinear regression model are
established, which extend the corresponding ones for independent errors and some
dependent errors.
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1 Introduction
Many researchers have paid attention to the study of the probability limit theorem and
its applications for the independent random variables, while the fact is that most of the
random variables found in real practice are dependent, which just motivates the authors’
interests in how well the dependent random variables will behave in some cases.

One of the important dependence structures is the widely orthant dependence structure.
The main purpose of the paper is to study the large deviation for the least squares estimator
of the nonlinear regression model based on widely orthant dependent errors.

1.1 Brief review
Consider the following nonlinear regression model:

Xi = fi(θ ) + ξi, i ≥ , (.)

where {Xi} is observed, {fi(θ )} is a known sequence of continuous functions possibly non-
linear in θ ∈ �, � denotes a closed interval on the real line, and {ξi} is a mean zero se-
quence of random errors. Denote

Qn(θ ) =



n∑

i=

ω
i
(
xi – fi(θ )

), (.)

© 2016 Huang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208051232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13660-016-1064-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-1064-6&domain=pdf
mailto:wxjahdx2000@126.com


Huang et al. Journal of Inequalities and Applications  (2016) 2016:125 Page 2 of 11

where {ωi} is a known sequence of positive numbers. An estimator θn is said to be a least
squares estimator of θ if it minimizes Qn(θ ) over θ ∈ �, i.e. Qn(θn) = infθ∈� Qn(θ ).

Noting that Q(x, x, . . . , xn; θ ) = Qn(θ ) is defined on Rn × �, where � is compact.
Furthermore, Q(x; θ ), where x = (x, x, . . . , xn), is a Borel measurable function of x for
any fixed θ ∈ � and a continuous function of θ for any fixed x ∈ Rn. Lemma . of
Schmetterer [] shows that there exists a Borel measurable map θn : Rn → � such that
Qn(θn) = infθ∈� Qn(θ ). In the following, we will consider this version as the least squares
estimator θn.

Let θ be the true parameter and assume that θ ∈ �. Ivanov [] established the following
large deviation result for independent and identically distributed (i.i.d.) random variables.

Theorem . Let {ξi, i ≥ } be i.i.d. with E|ξi|p < ∞ for some p > . Suppose that there exist
some constants  < c < c < ∞ such that

c(θ – θ) ≤ 
n

n∑

i=

(
fi(θ) – fi(θ)

) ≤ c(θ – θ), ∀n ≥ , (.)

for all θ, θ ∈ �. Then, for every ρ > , it has

P
(
n/|θn – θ| > ρ

) ≤ cρ–p, ∀n ≥ , (.)

where c is a positive constant independent of n and ρ .

Hu [] also got the result (.) and gave its application to martingale difference, ϕ-mixing
sequence and negatively associated (NA, in short) sequence. In addition, Hu [] proved
the following large deviation result:

P
(
n/|θn – θ| > ρ

) ≤ cn–ρ/ρ–p, (.)

under the condition that supn≥ E|ξn|p < ∞ for some  < p ≤ , and Hu gave its application
to the martingale difference, the ϕ-mixing sequence, the NA sequence, and the weakly
stationary linear process. Recently, Yang and Hu [] obtained some large deviation re-
sults based on ρ̃-mixing, asymptotically almost negatively associated, negatively orthant
dependent and Lp-mixingales random errors. For more details as regards the nonlinear
regression model, one can refer to Ibregimov and Has’minskii [], Ivanov and Leonenko
[], Ivanov [], and so on. In this paper, the large deviation results for the least squares
estimator of the nonlinear regression model based on the WOD error will be investigated.

Inspired by the above literature, we will establish the large deviation results based on
widely orthant dependent errors.

1.2 Concept of widely orthant dependence structure
In this section, we will present the widely orthant dependence structure, which was intro-
duced by Wang et al. [].
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Definition . For the random variables {Xn, n ≥ }, if there exists a finite real sequence
{fU (n), n ≥ } satisfying for each n ≥  and for all xi ∈ R,  ≤ i ≤ n,

P(X > x, X > x, . . . , Xn > xn) ≤ fU (n)
n∏

i=

P(Xi > xi), (.)

then we say that the {Xn, n ≥ } are widely upper orthant dependent (WUOD, in short); if
there exists a finite real sequence {fL(n), n ≥ } satisfying for each n ≥  and for all xi ∈ R,
 ≤ i ≤ n,

P(X ≤ x, X ≤ x, . . . , Xn ≤ xn) ≤ fL(n)
n∏

i=

P(Xi ≤ xi), (.)

then we say that the {Xn, n ≥ } are widely lower orthant dependent (WLOD, in short);
if they are both WUOD and WLOD, then we say that the {Xn, n ≥ } are widely orthant
dependent (WOD, in short), and fU (n), fL(n), n ≥  are called dominating coefficients.

An array {Xni, i ≥ , n ≥ } of random variables is called a row-wise WOD if for every
n ≥ , {Xni, i ≥ } is a sequence of WOD random variables.

As mentioned above, Wang et al. [] first introduced the concept of WOD random vari-
ables. Their properties and applications have been studied consequently. For instance,
WOD random variables include some common negatively dependent random variables,
some positively dependent random variables and others, which were shown in the exam-
ples provided by Wang et al. [] and the uniform asymptotic for the finite-time ruin prob-
ability of a new dependent risk model with a constant interest rate was also investigated in
the same work. He et al. [] established the asymptotic lower bounds of precise large de-
viations with non-negative and dependent random variables. The uniform asymptotic for
the finite time ruin probabilities of two types of non-standard bidimensional renewal risk
models with constant interest forces and diffusion generated by Brownian motions was
proposed by Chen et al. []. The Bernstein type inequality for WOD random variables
and its applications were studied by Shen []. Wang et al. [] investigated the complete
convergence for WOD random variables and gave its applications to nonparametrics re-
gression models, and so forth.

As is well known, the class of WOD random variables contains END random variables,
NOD random variables, NSD random variables, NA random variables, and independent
random variables as special cases. Hence, it is meaningful to extend the results of Yang
and Hu [] to WOD errors.

Throughout this paper, let {ξi, i ≥ } be a sequence of WOD random variables with dom-
inating coefficients fU (n), fL(n), n ≥ . Denote f (n) = max{fU (n), fL(n)}. Let C denote a pos-
itive constant, which may vary in different spaces. Let �x	 be the integer part of x.

The main results and their proofs are presented in Section  and for the convenience of
the reader, some useful lemmas relating to the proofs are listed in Section .

2 Preliminary lemmas
In this section, we provide some important lemmas will be used to prove the main results
of the paper. The first one is the basic property for WOD random variables, which was
established by Wang et al. [].
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Lemma . Let {Xn, n ≥ } be a sequence of WOD random variables.
(i) If {hn(·), n ≥ } are all non-decreasing (or all non-increasing), then {hn(Xn), n ≥ } are

still WOD.
(ii) For each n ≥  and any s ∈ R,

E exp

{
s

n∑

i=

Xi

}
≤ f (n)

n∏

i=

E exp{sXi}. (.)

The next lemma is very useful to prove the main results of the paper, which can be found
in Hu [].

Lemma . Let {�,F , P} be a probability space, [T, T] be a closed interval on the real
line. Assume that V (θ ) = V (ω, θ ) (θ ∈ [T, T], ω ∈ �) is a stochastic process such that
V (ω, θ ) is continuous for all ω ∈ �. If there exist numbers α > , r >  and C = C(T, T) <
∞ such that

E
∣∣V (θ) – V (θ)

∣∣r ≤ C|θ – θ|+α , ∀θ, θ ∈ [T, T],

then for any ε > , a > , θ, θ + ε ∈ [T, T], γ ∈ (,  + α), one has

P
(

sup
θ≤θ,θ≤θ+ε

∣∣V (θ) – V (θ)
∣∣ ≥ a

)
≤ C

(α – γ + )(α – γ + )

(
γ

γ – 

)r
εα+

ar . (.)

The following are the Marcinkiewicz-Zygmund type inequality and Rosential-type in-
equality for WOD random variables, which play an important role in the proof.

Lemma . (cf. Wang et al. []) Let p ≥  and {Xn, n ≥ } be a sequence of WOD random
variables with EXn =  and E|Xn|p < ∞ for each n ≥ . Then there exist positive constants
C(p) and C(p) depending only on p such that, for  ≤ p ≤ ,

E

∣∣∣∣∣

n∑

i=

Xi

∣∣∣∣∣

p

≤ [
C(p) + C(p)f (n)

] n∑

i=

E|Xi|p, (.)

and for p > ,

E

∣∣∣∣∣

n∑

i=

Xi

∣∣∣∣∣

p

≤ C(p)
n∑

i=

E|Xi|p + C(p)f (n)

( n∑

i=

E|Xi|
)p/

. (.)

3 Main results and their proofs
Based on the useful inequalities in Section , we now study the large deviation results for
the least squares estimator of the nonlinear regression model based on WOD errors.

Theorem . Consider the model (.). Assume that there exist positive constants c, c,
c, c such that

c|θ – θ| ≤
∣∣fi(θ) – fi(θ)

∣∣ ≤ c|θ – θ|, ∀θ, θ ∈ �, i ≥ , (.)
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and

c ≤ ωi ≤ c, ∀i ≥ . (.)

Let {ξi, i ≥ } be a sequence of mean zero WOD random variables with E|ξi|p < ∞ for some
p > . Denote

�p,n =
n∑

i=

E|ξi|p, n ≥ , (.)

and

p,n =

( n∑

i=

(
E|ξi|p

)/p
)p/

, n ≥ . (.)

Then there exists a positive constant C(p) such that

P
(
n/|θn – θ| > ρ

) ≤ C(p)
(
�p,n + f (n)p,n

)
n–p/ρ–p (.)

for every ρ >  and all n ≥ .

Proof Denote

�n(θ, θ) =

n

n∑

i=

ω
i
(
fi(θ) – fi(θ)

)
, Vn(θ ) =


n/

n∑

i=

ξi
(
fi(θ ) – fi(θ)

)

and

Un(θ ) =
Vn(θ )

n/�n(θ , θ)
, θ 
= θ.

Without loss of generality, we assume that ωi =  for all i. The general case can be ob-
tained similarly in view of (.). It follows from (.) that

c
 (θ – θ) ≤ �n(θ, θ) ≤ c

(θ – θ) (.)

for all θ, θ ∈ θ and n ≥ . Denote Anε = [|θn – θ| > ε]. If ε ∈ Anε , then θn 
= θ and

n∑

i=

ξ 
i ≥

n∑

i=

(
Xi – fi(θn)

)

=
n∑

i=

(
Xi – fi(θ)

) + 
n∑

i=

(
Xi – fi(θ)

)(
fi(θ) – fi(θn)

)

+
n∑

i=

(
fi(θ) – fi(θn)

)

=
n∑

i=

ξ 
i – nUn(θn)�n(θn, θ) + n�n(θn, θ),
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which implies that

�n(θn, θ)
(
 – Un(θn)

) ≤ . (.)

Noting that θn 
= θ, we have by (.) that �n(θn, θ) > , which together with (.) shows
that Un(θn) ≥ /. Thus, Anε = [|θn – θ| > ε] ⊂ [Un(θn) ≥ /], and, for any ε > ,

P
(|θn – θ| > ε

) ≤ P
(

sup
|θn–θ|>ε

Un(θn) ≥ /
)

. (.)

Putting ε = ρn–/ in (.), we have

P
(
n/|θn – θ| > ρ

) ≤ P
(

sup
|θn–θ|>ρ

∣∣Un(θ )
∣∣ ≥ /

)

+ P
(

sup
ρn–/<

∣∣θn–θ
∣∣≤ρ

∣∣Un(θ )
∣∣ ≥ /

)
(.)

for every ρ > . It follows from (.) again that

sup
|θ–θ|>ρ

|Vn(θ )|
n/�n(θ , θ)

= sup
|θ–θ|>ρ

|Vn(θ )|
n/�/

n (θ , θ)�/
n (θ , θ)

≤ sup
|θ–θ|>ρ

|Vn(θ )|
n/�/

n (θ , θ)ρc
. (.)

Hence,

P
(

sup
|θ–θ|>ρ

∣∣Un(θ )
∣∣ ≥ /

)
= P

(
sup

|θ–θ|>ρ

|Vn(θ )|
n/�n(θ , θ)

≥ /
)

≤ P
(

sup
|θ–θ|>ρ

|Vn(θ )|
n/�/

n (θ , θ)
≥ cρ



)
. (.)

Cauchy’s inequality yields

( |Vn(θ )|
n/�/

n (θ , θ)

)

=

(

n

n∑

i=

ξi
fi(θ ) – fi(θ)
�/

n (θ , θ)

)

≤ 
n

n∑

i=

ξ 
i , ∀θ 
= θ. (.)

Noting hat p > , we have by Minkowski’s inequality

(
E

( n∑

i=

ξ 
i

)p/)/p

≤
n∑

i=

(
E|ξi|p

)/p. (.)

Hence, we can obtain by Markov’s inequality, (.)-(.) and f (n) ≥  (from the definition
of WOD random variables)

P
(

sup
|θ–θ|>ρ

∣∣Un(θ )
∣∣ ≥ /

)
≤ P

(

n

n∑

i=

ξ 
i ≥

(



cρ

)
)

≤
(


nc

ρ


)p/

E

( n∑

i=

ξ 
i

)p/
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≤
(


nc

ρ


)p/
( n∑

i=

(
E|ξi|p

)/p
)p/

≤ C(p)n–p/ρ–pp,n

≤ C(p)n–p/ρ–pf (n)p,n. (.)

For m = , , , . . . , �n/	, denote θ (m) = θ + ρ

n/ + mρ

�n/	 , ρm = θ (m) – θ(> ). It follows
from (.) again that

sup
ρm≤θ–θ≤ρm+

∣∣Un(θ )
∣∣ ≤ sup

ρm≤θ–θ≤ρm+

|Vn(θ )|
n/c

 (θ – θ)

≤ sup
ρm≤θ–θ≤ρm+

|Vn(θ )|
n/c

ρ

m

, (.)

and thus

P
(

sup
ρn–/≤θ–θ≤ρ

∣∣Un(θ )
∣∣ ≥ 



)
≤

�n/	–∑

m=

P
(

sup
ρm≤θ–θ≤ρm+

∣∣Un(θ )
∣∣ ≥ 



)

≤
�n/	–∑

m=

P
(

sup
ρm≤θ–θ≤ρm+

∣∣Vn(θ )
∣∣ ≥ 


c

ρ

mn/

)
.

Noting that

sup
ρm≤θ–θ≤ρm+

∣∣Vn(θ )
∣∣ ≤ ∣∣Vn

(
θ (m)

)∣∣ + sup
θ (m)≤θ,θ≤θ (m+)

∣∣Vn(θ) – Vn(θ)
∣∣,

we have

P
(

sup
ρm≤θ–θ≤ρm+

∣∣Vn(θ )
∣∣ ≥ 


c

ρ

mn/

)

≤ P
(∣∣Vn

(
θ (m)

)∣∣ ≥ 


c
ρ


mn/

)

+ P
(

sup
θ (m)≤θ,θ≤θ (m+)

∣∣Vn(θ) – Vn(θ)
∣∣ ≥ 


c

ρ

mn/

)
. (.)

In view of the definition of Vn(θ ), it is easy to check that

Vn
(
θ (m)

)
=


n/

n∑

i=

ξi
(
fi
(
θ (m)

)
– fi(θ)

)
, Vn(θ) – Vn(θ) =


n/

n∑

i=

ξi
(
fi(θ) – fi(θ)

)
.

By Markov’s inequality, (.) in Lemma ., (.), and Hölder’s inequality, we get

P
(∣∣Vn

(
θ (m)

)∣∣ ≥ 


c
ρ


mn/

)

≤
(


c

ρ

mn/

)p

E
∣∣Vn

(
θ (m)

)∣∣p
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≤
(


c

ρ

mn/

)p 
np/

{
C(p)

n∑

i=

E|ξi|p
∣∣fi

(
θ (m)

)
– fi(θ)

∣∣p

+ C(p)f (n)

( n∑

i=

Eξ 
i
(
fi
(
θ (m)

)
– fi(θ)

)
)p/}

≤
(

c

c
ρ


mn/

)p 
np/

∣∣θ (m) – θ
∣∣p

{
C(p)

n∑

i=

E|ξi|p + C(p)f (n)

( n∑

i=

Eξ 
i

)p/}

≤
(

c

c
ρ


mn/

)p 
np/

∣∣θ (m) – θ
∣∣p

{
C(p)

n∑

i=

E|ξi|p + C(p)f (n)

( n∑

i=

(
E|ξi|p

)/p
)p/}

≤ C(p)ρ–p
m n–p(�p,n + f (n)p,n

)
. (.)

On the other hand,

E
∣∣Vn(θ) – Vn(θ)

∣∣p

≤ 
np/

{
C(p)

n∑

i=

E|ξi|p
∣∣fi(θ) – fi(θ)

∣∣p + C(p)f (n)

( n∑

i=

Eξ 
i
(
fi(θ) – fi(θ)

)
)p/}

≤ c

np/

(
C(p)

n∑

i=

E|ξi|p + C(p)f (n)

( n∑

i=

Eξ 
i

)p/)
|θ – θ|p

≤ C(p)
np/

( n∑

i=

E|ξi|p + f (n)

( n∑

i=

(
E|ξi|p

)/p
)p/)

|θ – θ|p

=
C(p)
np/

(
�n,p + f (n)p,n

)|θ – θ|p

=: C(n, p)|θ – θ|p. (.)

For ∀ θ, θ ∈ � and n ≥ , applying Lemma . with r = +α = p, C = C(n, p), ε = ρ/�n–/	,
a = 

 c
ρ


mn/, and γ ∈ (, p + ), we can obtain

P
(

sup
θ (m)≤θ,θ≤θ (m+)

∣∣Vn(θ) – Vn(θ)
∣∣ ≥ 


c

ρ

mn/

)

= P
(

sup
θ (m)≤θ,θ≤θ (m)+ρ/�n–/	

∣∣Vn(θ) – Vn(θ)
∣∣ ≥ 


c

ρ

mn/

)

≤ C(p)n–p/(�p,n + f (n)p,n)
(p +  – γ )(p +  – γ )

(
γ

γ – 

)p(
ρ

�n–/	
)p( 

cn
 ρ


mn/

)p

≤ C(p)ρp(�p,n + f (n)p,n
)
n–p/ρ–p

m . (.)

Noting that ρ = ρn–/, ρm > mρn–/, p > , we have by (.), (.), and (.) that

P
(

sup
ρn–/≤θ–θ≤ρ

∣∣Un(θ )
∣∣ ≥ 



)

≤
�n/	–∑

m=

{
C(p)ρ–p

m n–p(�p,n + f (n)p,n
)

+ C(p)ρ–p
m n–p/ρp(�p,n + f (n)p,n

)}
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≤ C(p)n–p/ρ–p(�p,n + f (n)p,n
)

+ C(p)n–p/ρ–p(�p,n + f (n)p,n
)

+ n–p/ρ–p(�p,n + f (n)p,n
) �n/	–∑

m=

(
C(p)

mp +
C(p)
mp

)

≤ C(p)n–p/ρ–p(�p,n + f (n)p,n
)
. (.)

Similarly, we have

P
(

sup
ρn–/≤θ–θ≤ρ

∣∣Un(θ )
∣∣ ≥ 



)
≤ C(p)n–p/ρ–p(�p,n + f (n)p,n

)
. (.)

Therefore, the desired result (.) follows from (.), (.), (.), and (.) immediately.
This completes the proof of the theorem. �

Inspired by Theorem ., we will consider the case p ∈ (, ] and establish the following
result.

Theorem . Consider the model (.). Let the conditions (.) and (.) in Theorem .
hold, and E|ξi|p < ∞ for some p ∈ (, ]. Denote

�p,n =
n∑

i=

E|ξi|p, n ≥ . (.)

Then there exists a positive constant C(p) such that

P
(
n/|θn – θ| > ρ

) ≤ C(p)f (n)�p,nn–p/ρ–p (.)

for every ρ >  and all n ≥ .

Proof Similar to the above proof, we have by the Cr inequality, (.), and (.)

∣∣∣∣
Vn(θ )

n/�/
n (θ , θ)

∣∣∣∣
p

=

∣∣∣∣∣

n

n∑

i=

ξi
fi(θ ) – fi(θ)
�/

n (θ , θ)

∣∣∣∣∣

p

≤ 
np np–

n∑

i=

|ξi|p |fi(θ ) – fi(θ)|p
�

p/
n (θ , θ)

≤ C(p)
n

n∑

i=

|ξi|p, ∀θ 
= θ, (.)

which implies that

P
(

sup
|θ–θ|>ρ

∣∣Un(θ )
∣∣ ≥ 



)
≤ P

(
C(p)

n

n∑

i=

|ξi|p ≥
(




cρ

)p
)

≤
(


cρ

)p C(p)
n

n∑

i=

E|ξi|p

≤ C(p)n–ρ–p�p,n. (.)
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Similar to the proof of (.), we see by Markov’s inequality, (.) in Lemma ., and (.)
that

P
(∣∣Vn

(
θ (m)

)∣∣ ≥ 


c
ρ


mn/

)

≤
(

c

c
ρ


mn/

)p 
np/

∣∣θ (m) – θ
∣∣p(C(p) + C(p)f (n)

)
�p,n

≤ C(p)
(
 + f (n)

)
ρ–p

m n–p�p,n. (.)

On the other hand, for all θ, θ and n ≥ , we have

E
∣∣Vn(θ) – Vn(θ)

∣∣p ≤ C(p)
np/

(
 + f (n)

)
�p,n|θ – θ|p =: C(n, p)|θ – θ|p. (.)

In view of the proof of (.) and noting that f (n) ≥ , we have

P
(

sup
θ (m)≤θ,θ≤θ (m+)

∣∣Vn(θ) – Vn(θ)
∣∣ ≥ 


c

ρ

mn/

)

≤ C(p)n–p/( + f (n))�p,n

(p +  – γ )(p +  – γ )

(
γ

γ – 

)p(
ρ

�n/	
)p( 

c
ρ


mn/

)p

≤ C(p)ρpf (n)�p,nn–p/ρ–p
m . (.)

Following a similar way, we can get the proof below:

P
(

sup
ρn–/≤θ–θ≤ρ

∣∣Un(θ )
∣∣ ≥ 



)

≤
�n


 	–∑

m=

{
C(p)

(
 + f (n)

)
ρ–p

m n–p�p,n + C(p)ρp( + f (n)
)
�p,nn–p/ρ–p

m
}

≤ C(p)
(
 + f (n)

)
n–p/�p,nρ

–p + C(p)
(
 + f (n)

)
n–p/�p,nρ

–p

+ n–p/ρ–p�p,n
(
 + f (n)

) �n

 	–∑

m=

(
C(p)

mp +
C(p)
mp

)

≤ C(p)n–p/f (n)�p,nρ
–p, (.)

and thus

P
(

sup
ρn–/≤θ–θ≤ρ

∣∣Un(θ )
∣∣ ≥ 



)
≤ C(p)n–p/f (n)�p,nρ

–p. (.)

Therefore, the desired result (.) follows from (.), (.), (.), and (.) immedi-
ately. The proof is completed. �
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