50,188 research outputs found

    Diagnostic Color Strip Reader for World Health Partners Clinics

    Get PDF
    Despite the advancement of medical technology, many people in developing countries like India and Kenya still suffer from treatable diseases. In many of the health clinics in these areas, color strips are used for checkups and diagnosis of diseases. However, a big problem with these color strips is that the diagnosis of color strips take a long time because they have to be manually checked. Currently, World Health Partners (WHP) works with doctors and hospitals in India and Kenya to provide more accessible healthcare through telehealth networks to get consultations from rural clinics to specialists at hospitals. We are working with WHP to streamline the process of color strip diagnosis, by creating an application that goes through the process of reading a color strip in a single step. Our application analyzes an image of a color strip and returns the concentration of the different factors being tested on the color strip. By doing so, we provide a precise analysis of color strips, instead of having to wait for a specialist

    Detecting Targets above the Earth's Surface Using GNSS-R Delay Doppler Maps: Results from TDS-1

    Get PDF
    : Global Navigation Satellite System (GNSS) reflected signals can be used to remotely sense the Earth’s surface, known as GNSS reflectometry (GNSS-R). The GNSS-R technique has been applied to numerous areas, such as the retrieval of wind speed, and the detection of Earth surface objects. This work proposes a new application of GNSS-R, namely to detect objects above the Earth’s surface, such as low Earth orbit (LEO) satellites. To discuss its feasibility, 14 delay Doppler maps (DDMs) are first presented which contain unusually bright reflected signals as delays shorter than the specular reflection point over the Earth’s surface. Then, seven possible causes of these anomalies are analysed, reaching the conclusion that the anomalies are likely due to the signals being reflected from objects above the Earth’s surface. Next, the positions of the objects are calculated using the delay and Doppler information, and an appropriate geometry assumption. After that, suspect satellite objects are searched in the satellite database from Union of Concerned Scientists (UCS). Finally, three objects have been found to match the delay and Doppler conditions. In the absence of other reasons for these anomalies, GNSS-R could potentially be used to detect some objects above the Earth’s surface.Peer ReviewedPostprint (published version

    Analyzing Anomalous Artefacts in TDS-1 Delay Doppler Maps

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Global Navigation Satellite System Reflectometry (GNSS-R) uses the GNSS reflected signals to study parameters of the Earth's surface such as ocean surface height, wind speed, soil moisture, sea surface target detection. In this paper fourteen DDMs (Delay Doppler Maps) of TechDemoSat-1 (TDS-1) containing anomalous artefacts are presented and analyzed. Anomalous artefacts are not caused by the reflection from Earth surface targets, occultation, nor the leakages of direct signals, but likely - according to their delays- from reflection of targets above the Earth's surface (either airborne or spaceborne).Postprint (author's final draft

    Anisotropy in magnetic and transport properties of Fe1-xCoxSb2

    Full text link
    Anisotropic magnetic and electronic transport measurements were carried out on large single crystals of Fe1-xCoxSb2 (0<= x <=1). The semiconducting state of FeSb2 evolves into metallic and weakly ferromagnetic by substitution of Fe with Co for x<0.5. Further doping induces structural transformation from orthorhombic Pnnm structure of FeSb2 to monoclinic P21/c structure of CoSb2 where semiconducting and diamagnetic ground state is restored again. Large magnetoresistance and anisotropy in electronic transport were observed.Comment: 7 pages, 6 figure

    Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo

    Get PDF
    Triple-negative breast cancer (TNBC) is the most lethal form of breast cancer. Lacking effective therapeutic options hinders treatment of TNBC. Here, we show that bepridil (BPD) and trifluoperazine (TFP), which are FDA-approved drugs for treatment of schizophrenia and angina respectively, inhibit Akt-pS473 phosphorylation and promote FOXO3 nuclear localization and activation in TNBC cells. BPD and TFP inhibit survival and proliferation in TNBC cells and suppress the growth of TNBC tumors, whereas silencing FOXO3 reduces the BPD- and TFP-mediated suppression of survival in TNBC cells. While BPD and TFP decrease the expression of oncogenic c-Myc, KLF5, and dopamine receptor DRD2 in TNBC cells, silencing FOXO3 diminishes BPD- and TFP-mediated repression of the expression of these proteins in TNBC cells. Since c-Myc, KLF5, and DRD2 have been suggested to increase cancer stem cell-like populations in various tumors, reducing these proteins in response to BPD and TFP suggests a novel FOXO3-dependent mechanism underlying BPD- and TFP-induced apoptosis in TNBC cells
    • …
    corecore