68,492 research outputs found

    Mode-locking of incommensurate phase by quantum zero point energy in the Frenkel-Kontorova model

    Get PDF
    In this paper, it is shown that a configuration modulated system described by the Frenkel-Kontorova model can be locked at an incommensurate phase when the quantum zero point energy is taken into account. It is also found that the specific heat for an incommensurate phase shows different parameter-dependence in sliding phase and pinning phase. These findings provide a possible way for experimentalists to verify the phase transition by breaking of analyticity.Comment: 6 pages in Europhys style, 3 eps figure

    Free-energy barrier to melting of single-chain polymer crystallite

    Full text link
    We report Monte Carlo simulations of the melting of a single-polymer crystallite. We find that, unlike most atomic and molecular crystals, such crystallites can be heated appreciably above their melting temperature before they transform to the disordered "coil" state. The surface of the superheated crystallite is found to be disordered. The thickness of the disordered layer increases with superheating. However, the order-disorder transition is not gradual but sudden. Free-energy calculations reveal the presence of a large free-energy barrier to melting.Comment: AMS-Latex, 4 pages with 5 figures, submitted to Phys. Rev. Let

    Coexistence and competition of multiple charge-density-wave orders in rare-earth tri-telluride RTe3

    Full text link
    The occurrences of collective quantum states, such as superconductivity (SC) and charge- or spin-densitywaves (CDWs or SDWs), are among the most fascinating phenomena in solids. To date much effort has been made to explore the interplay between different orders, yet little is known about the relationship of multiple orders of the same type. Here we report optical spectroscopy study on CDWs in the rare-earth tri-telluride compounds RTe3 (R = rare earth elements). Besides the prior reported two CDW orders, the study reveals unexpectedly the presence of a third CDW order in the series which evolves systematically with the size of R element. With increased chemical pressure, the first and third CDW orders are both substantially suppressed and compete with the second one by depleting the low energy spectral weight. A complete phase diagram for the multiple CDW orders in this series is established.Comment: 7 pages, 4 figures, 1 tabl

    Leggett mode in a strong-coupling model of iron arsenide superconductors

    Get PDF
    Using a two-orbital model of the superconducting phase of the pnictides, we compute the spectrum of the Leggett mode -- a collective excitation of the phase of the superconducting gap known to exist in multi-gap superconductors -- for different possible symmetries of the superconducting order parameter. Specifically, we identify the small regions of parameter space where the Leggett mode lies below the two-particle continuum, and hence should be visible as a sharp resonance peak. We discuss the possible utility of the Leggett mode in distinguishing different momentum dependencies of the superconducting gap. We argue that the observation of a sharp Leggett mode would be consistent with the presence of strong electron-electron correlations in iron-based superconductors. We also emphasize the importance of the orbital character of the Leggett mode, which can result in an experimental observation of the mode in channels other than A1gA_{1g}
    corecore