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Using a two-orbital model of the superconducting phase of the pnictides, we compute the spectrum of the
Leggett mode—a collective excitation of the phase of the superconducting gap known to exist in multigap
superconductors—for different possible symmetries of the superconducting order parameter. Specifically, we
identify the small regions of parameter space where the Leggett mode lies below the two-particle continuum,
and hence should be visible as a sharp resonance peak. We discuss the possible utility of the Leggett mode in
distinguishing different momentum dependencies of the superconducting gap. We argue that the observation of
a sharp Leggett mode would be consistent with the presence of strong electron-electron correlations in iron-
based superconductors. We also emphasize the importance of the orbital character of the Leggett mode, which
can result in an experimental observation of the mode in channels other than A1g.
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I. INTRODUCTION

The discovery of high-temperature superconductivity in
iron arsenide and related compounds at the beginning of
2008 �Ref. 1� has triggered an enormous interest in the
condensed-matter physics community and has stimulated a
flurry of experimental activity.1–9 Upon electron10 or hole7

doping of a magnetically ordered parent state, most of the
iron-based superconductors exhibit transition temperatures
Tc beyond the conventional BCS regime, with some extend-
ing up to 56 K,11 thereby breaking the cuprate monopoly on
high-temperature superconductivity. Experimental evidence
accompanied by theoretical modeling suggest that the pairing
in the iron pnictides is different from the d-wave pairing of
the cuprates. Nevertheless, they resemble the cuprates in that
it is increasingly clear that the magnetism of the parent state
�either long-range or fluctuating order� crucially influences
the pairing symmetry of the doped system. A conclusive ob-
servation of the pairing symmetry still remains elusive with
both nodal and nodeless order parameters reported in experi-
ments. This provides a strong incentive to identify new ex-
perimental probes potentially sensitive to the symmetry of
the superconducting gap.

While a wide range of nodal gap functions were initially
predicted,12–14 the general theoretical view has now con-
verged to favor an extended s-wave order parameter �de-
noted s� or sx2y2� that takes opposite signs on the electron
and hole pockets along the multiband Fermi surfaces. The
symmetry of this sx2y2 gap matches that of the iron-pnictide
Fermi surface: it is maximal around �0,0�, �� ,0�, �� ,0�, and
�� ,�� the location of the Fermi surfaces in the unfolded one
iron per site Brilloiun zone. This sign-alternating nodeless
gap is consistent with some experimental data and also has
broad theoretical support.15–23 Indeed, both strong17,19-and
weak15,16,18,20–26-coupling theories of the onset of supercon-
ductivity predict an extended s-wave order parameter.

Experimentally, however, there is no consensus about the
nature of the order parameter with both nodal and nodeless
gaps being reported. While most experiments can be ex-
plained within the framework of an s� gap,27 several facts,
such as the T3 dependence of the NMR relaxation rate over a
significant temperature range,28–30 residual finite quasiparti-
cle terms in the thermal conductivity,31,32 as well as the
power-law behavior of the penetration depth,33,34 remain un-
settled. Some of the experiments on penetration depth and
thermal conductivity could be explained by an s� order pa-
rameter if there were a large gap anisotropy,33,34 but this
contradicts angle resolved photoemission spectroscopy
�ARPES� data, which reveals very isotropic nodeless gaps on
the hole Fermi surfaces,35–37 of magnitudes matching a
strong-coupling form ��k�=�0 cos�kx�cos�ky� �Ref. 17� in
the unfolded Brillouin zone.

A possible resolution of this apparent contradiction, con-
sistent with the theoretical prediction of an s� order param-
eter, is that the gap anisotropy is doping dependent and that
different experiments are done at different dopings. In the
strong-coupling mean-field picture,17,19 the gap anisotropy is
intrinsically doping dependent: the gap has a form
cos�kx�cos�ky� which becomes more anisotropic as the dop-
ing is increased. In a weak-coupling expansion of Fermi-
surface interactions, the gap anisotropy can arise from the
presence of an A1g term cos�kx�+cos�ky� �which does not
break the crystal symmetry but can create nodes on the �� ,0�
and �0,�� electron surfaces� in the band interactions38 upon
renormalization.20 A large gap anisotropy is already present
in functional renormalization-group studies of orbital
models.18,24

In this paper, we analyze another physical phenomenon—
the Leggett mode of multiband superconductors—that de-
pends on the strength of the pairing order parameter and
could also, in principle, quantitatively distinguish a sign-
changing gap from other gap symmetries. Specifically, we
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investigate to what extent the pairing symmetry of the iron-
based superconductors can be deduced by analyzing the be-
havior of the Leggett mode as a function of doping and the
strength of superconducting order parameters. As the iron-
based superconductors have multiple orbitals, the supercon-
ducting state exhibits a plethora of collective modes beyond
the usual Goldstone/Higgs plasmon. Here we use an effec-
tive two-orbital model of the superconducting state to study
one of these—the Leggett mode associated with antisymmet-
ric phase fluctuations between the two superconducting order
parameters. This gapped collective mode can, in the right
parameter range, present a sharp collective mode resonance
below the two-particle continuum which could, in principle,
be detected experimentally.

To determine whether such a collective mode resonance
occurs in the pnictide superconductors, we study the gap and
dispersion of the Leggett mode as a function of doping and
the superconducting order parameters. We show that, for a
sign-changing gap function, the Leggett mode can be below
the two-particle continuum for a small regime at low doping.
In particular, when the band renormalization is large, an un-
damped Leggett mode can exist in a relatively large param-
eter region. Thus, the observation of a sharp Leggett mode
will validate the presence of strong electron-electron corre-
lations in the iron-based superconductors. Moreover, in our
two-orbital model, the Leggett mode is a B1g mode, instead
of a pure A1g mode, which is expected in any band-based
model. Therefore, the orbital structure of pairing in the iron-
based superconductors can be validated by identifying the
existence of the Leggett mode in channels other than A1g.

Unfortunately, we find that the Leggett mode cannot
qualitatively distinguish between a sign-changing order pa-
rameter and other gapped order parameters. However, the
sign-changing order parameter will have a degree of aniso-
tropy which depends on doping. For large doping, the sign-
changing order parameter on the enlarged Fermi surface will
exhibit larger anisotropy. As such, the superconducting gap
will be small on some parts of the Fermi surface and the
Leggett mode will be overdamped, lying above the two-
particle continuum, and hence unobservable. This presents a
testable opportunity if, at moderate doping �when the gaps
should theoretically be isotropic�, the Leggett mode is below
the two-particle continuum and hence observable. If so, the
observation of a disappearing collective mode provides indi-
rect support for a sign-changing gap function.

II. COMPUTING THE EFFECTIVE ACTION

The Leggett mode is a collective excitation of two-�or
multi� band superconductors, associated with antisymmetric
phase oscillations between the two bands. It is thus a neutral
mode associated with oscillations between the supercurrents
of the two bands. Here we present the effective action for
this mode derived from a two-orbital model appropriate to
the pnictides at temperatures well below the onset of super-
conductivity. To render our calculations analytically trac-
table, we focus on a simplified model of the iron-based su-
perconductors that takes into account only the dxz ,dyz
orbitals. In this case, an intraband order parameter can have

its phase fluctuate between the two orbitals in two modes:
the usual symmetric combination �Goldstone� and the anti-
symmetric combination, which is the Leggett mode.

While the conventional Leggett mode involves only the
Fermi-surface gaps, our work involves a Leggett mode in the
orbital gaps. We consider the orbital basis rather than an
effective band basis, because neglecting the orbital structure
of the iron-based superconductors is most likely incorrect: it
was shown39 that due to the difference in mirror symmetry
eigenvalues of the electron and one of the hole bands at the �
point in the Brillouin zone �BZ�, the spin-density wave
�SDW� state is gapless with a Dirac point in both two- and
five-orbital models of iron-based superconductors. This
highly nontrivial effect, confirmed by experiments,40 is lost
in the effective band-basis picture. Details of the derivation
of the Leggett mode effective action in the orbital basis,
which differs slightly from the band-basis result of, e.g., Ref.
41, are given in Appendix A.

A. Model Hamiltonian

Using the insight provided by numerical and analytic
studies suggesting that the antiferromagnetic exchange cou-
pling between next-nearest-neighbor Fe sites is strong,12,42

two of us17 studied a t-J1-J2 model without band renormal-
ization and obtained a gap function of the form
cos�kx�cos�ky�, which changes sign between the electron and
hole pockets of the Fermi surface of the material. It is this
type of strong-coupling superconductivity that we will focus
on in this paper, but we point out that other weak-coupling
approaches exist and give a similar sign-changing order
parameter.15,16,18,20–23

To calculate the effective action for the phase modes of
the superconducting state, we employ a model of the pnic-
tides which incorporates only the dxz and dyz orbitals at each
site together with hybridization between the two. Although
this description is only truly valid in the case of unphysically
large crystal-field splitting, we use this model for its analytic
simplicity. We adopt the band structure proposed in Ref. 14,
which at first glance captures the essence of the density-
functional theory results

H0 = �
k�

�k�
† T�k��k� + Hint,

T�k� = � �x�k� �xy�k�
�xy�k� �y�k�

� , �1�

where �k,�
† = �cdxz,k,�

† ,cdyz,k,�
† � is the creation operator for spin

� electrons in the two orbitals and the kinetic terms read

�x�k� = − 2t1 cos kx − 2t2 cos ky − 4t3 cos kx cos ky − � ,

�y�k� = − 2t2 cos kx − 2t1 cos ky − 4t3 cos kx cos ky − � ,

�xy�k� = − 4t4 sin kx sin ky . �2�

The hoppings have roughly the same magnitude: t1=−1.0,
t2=1.3, t3=−0.85, and t4=−0.85 in eV. We find that the half
filled, two electrons per site configuration is achieved when
�=1.54 eV.
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The missing ingredient in this two-orbital model is the dxy
orbital, which can be shown to be important to the detailed
physics of the iron-based superconductors.43 For example,
the kinetic model Eq. �1� gets the location of the second hole
pocket wrong—it situates it at the �� ,�� point in the un-
folded BZ whereas local-density approximation calculations
show two hole pockets at the � point. However, the two-
orbital model gets several of the qualitative characteristics of
the iron-based superconductors right: it has a nodal SDW
instability and a sign-changing s-wave superconducting in-
stability.

To describe the superconducting phase, we use the ap-
proach of Ref. 17, adopting a strong-coupling picture in
which the interaction Hamiltonian contains antiferromag-
netic nearest-neighbor and next-nearest-neighbor couplings
between the spins in both identical and opposite orbitals.
While not entirely correct at lattice scales, it was shown that
this model gives remarkably large overlaps with the
interactions obtained through the functional
renormalization-group44 method, and hence can be consid-
ered as an effective interaction model for the iron-based su-
perconductors. Furthermore, for our purposes these interac-
tions are important only insofar as they give, after
decoupling in the superconducting channel, the sign-
changing cos�kx�cos�ky� superconducting order parameter. In
this sense, the interacting spin model we use can be thought
of as an effective Ginzburg-Landau description of iron-based
superconductors; the precise mechanism driving the transi-
tion to the superconducting phase is irrelevant to the effec-
tive action we derive here.

Based on the mean-field analysis of Ref. 17, we will as-
sume throughout that the superconducting instability is
dominated by the intraorbital interactions so that the gap is
diagonal in the orbital basis. Indeed, at the mean-field level,
the interorbital pairing is weaker than the intraorbital pairing
by a factor of approximately five.17 In addition there is a
large on-site interorbital Hund’s rule coupling which will not
enter into the present analysis as it does not alter the nature
of the order parameter at mean-field level. We will briefly
discuss the impacts of this last term together with the anti-
ferromagnetic interorbital interactions, in Sec. II C.

B. Phase-only effective action

To obtain an effective action for the phase of the super-
conducting gap, we follow the general protocol of Ref. 45;
details of this calculation as applied to the orbital basis are
given in Appendix A. In essence, one first decouples the
interaction terms in the microscopic model using a Hubbard-
Stratonovich transformation. This re-expresses operators
quadratic in the fermions as interaction terms between a pair
of fermions and the superconducting field 	. Deep in the
superconducting region, where fluctuations in the magnitude
��			 can be neglected, integrating out the fermions then
yields an effective action for the phase modes of the system.
Since we work with a two-orbital model, there are a priori
two superconducting gaps, excluding interorbital pairing.
Though by symmetry their magnitudes have to be equal, this
leads to two independent phase degrees of freedom. As is

well known, one of these is a Goldstone mode which, upon
including the Coulomb interactions, becomes a plasma
mode. The other is the �gapped� Leggett mode, which will be
our principle focus here.

For our purposes, the two phase degrees of freedom are
most conveniently expressed in the basis


 �
1

2

��1 + �2� � �
1

2

��1 − �2� , �3�

where �1 and �2 are the phases of the gaps in the xz and yz
orbitals, respectively. Hence 
 represents the symmetric
phase oscillation while � represents the �neutral� antisym-
metric phase mode. In this basis, we find the effective action
to be �see calculation details in Appendix A�

Sef f =� d
d2q�
�
,q� ��
,q� �

��N

�
2 − c

,ij
2 qiqj� c
�,ij

2 qiqj

c
�,ij
2 qiqj N���
2 − 
0

2 − c��,ij
2 qiqj�

�
��
�
,q�

��
,q� � �4�

with momentum-independent coefficients given by

N

 = −� d2k

�2��2� �2

4E+
���3 +

�2

4E−
���3
 , �5�

N�� = −� d2k

�2��2

��x − �y�2

�E+ − E−�2� �2

4E+
���3 +

�2

4E−
���3


−� d2k

�2��2

8�2�xy
2

�E+ − E−�2

E+
2 + E−

2 + �2 + E+
���E−

��� − E+E−

�E+
��� + E−

����3E+
���E−

��� ,

�6�

M =� d2k

�2��2

4�2�xy
2

E+
���E−

����E+
��� + E−

����
�7�

with 
0�
 M
−N��

. Here, E� are the two-band energies
E�= 1

2 ��x+�y �
��x−�y�2+4�xy
2 � of the metallic state and

E�
���=
E�

2 +�2 are the quasiparticle energies in the supercon-
ducting phase. All �, E, and � are evaluated at the momen-
tum k to be integrated over. The above equations represent
the main result of the paper.

In Eq. �4�, terms linear in q, as well as terms bilinear in
q ,
, all vanish in the limit T→0. As expected, this effective
action Eq. �4� describes one gapless mode, comprised en-
tirely of symmetric phase fluctuations at q=0, and one
gapped mode. The latter is the Leggett mode; at q=0 it con-
sists purely of antisymmetric phase oscillations between the
two superconducting gaps. Here we are principally interested
in the Leggett mode gap, 
0, as this represents the threshold
at which the mode becomes experimentally observable. Thus
if 
0�2�, we expect the Leggett mode to appear as a sharp
resonance in the spectrum of the pnictide superconductors.

For terms involving q2, the expressions for the coeffi-
cients c��,ij

2 are somewhat more complicated and are thus
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given in Appendix A 1. We note, however, that for i� j, any
coefficient of qiqj vanishes due to symmetry. Further, for i
= j, symmetry of the coefficients under a 90° rotation of the
Brillouin zone fully determines their direction dependence in
q. Taking these symmetries into account, Eq. �4� has the
form

Sef f =� d
d2q�
 � �

��N

�
2 − c


2 q2� c
�

2 �qx
2 − qy

2�
c
�

2 �qx
2 − qy

2� N���
2 − 
0
2 − c��

2 q2�0
��


�
� .

�8�

We should note that the Leggett mode gap is proportional
to �xy

2 –that is, to the off-diagonal kinetic terms in the orbital
basis. This is in contrast to the approach of, for example,
Ref. 41, in which the superconducting gap is taken to be
diagonal in the band basis of the normal state, and it is the
interband interactions which couple the phases of the two
gaps, and hence generate the Leggett mode. This difference
stems from the fact that we take the gap to be diagonal in the
orbital basis: ���k�= �c�↑kc�↓−k�, where � indexes the orbitals
and assume that the pairing is defined over the whole Bril-
louin zone. Any model in which the interaction is written in
orbital space and which aims to respect the point-group sym-
metries of the lattice will require this type of orbital-basis
formalism.

C. Including Hunds interactions

In light of the fact that our approach is based on an ab-
sence of off-diagonal interactions in the superconducting
channel �when the orbital basis is used�, it is useful to con-
sider in more detail the validity of this assumption in the
presence of interorbital couplings. In the pnictides the ferro-
magnetic Hund’s rule interaction

HH = − JH�
r

S1rS2r � − JH�
r

c1r�
† ��,��c1r��c2r�

† ��,��c2r��

�9�

is the principal source of such interactions.

Since spin ordering must be absent in the superconducting
phase, generically we may decouple the Hunds interaction in
either the particle-particle channel or the particle-hole chan-
nel. At lowest loop order, the particle-particle interaction
serves only to renormalize the band structure. The particle-
hole contribution was, as previously noted, shown to be
small by Ref. 17. Neglecting the small interorbital pairing at
mean field, we find that the Hunds interaction affects the
effective action for the Leggett mode � only through higher
loop corrections in the fermion propagator.

Further, it is straightforward to include the effect of the
small interorbital interaction in the superconducting
channel. Such a term simply modifies the effective action
for the superconducting phase by adding a term
V12��1�2

�+�2�1
���2	�	2V12 cos���. This modifies the gap of

the Leggett mode according to


0
2 → 
0

2 −
V12

V11V22 − V12
2

�0
2

N��

. �10�

Here V�� parametrize the superconducting interaction be-
tween orbitals � and �, as described in Eq. �A2�, and we
have taken ��k�=�0 cos�kx�cos�ky�. For 0�V12�V11,V22,
the effect of including such a term is always to bring the
Leggett mode gap down in energy.

D. Effective action with Coulomb terms

In the above analysis, we ignored the effects of the Cou-
lomb interaction on the phase modes. In a single-band super-
conductor, including the Coulomb interactions modifies the
effective action for the phase � of the superconducting gap
such that at zero temperature � becomes a plasma mode.46

�At finite temperatures a second mode, the Carlson-Goldman
mode, is known to exist both in one47-and two48-band super-
conductors.� We will not examine in detail the plasma mode
here; rather we note that including Coulomb interactions
does not substantially modify the relevant features of the
Leggett mode, as we show below. This is not surprising since
the Leggett mode is, at long wavelengths, associated with the
neutral antisymmetric phase oscillations, and hence does not
couple to the Coulomb interaction.

In the presence of Coulomb interactions, the phase-only
effective action has the form

Sef f =� d
d2k�
 � ��N

� 
2

1 − U�q�N



− c


2 q2� c
�

2 �qx
2 − qy

2�

c
�
2 �qx

2 − qy
2� N���
2 − 
0

2 − c��
2 q2�

��


�
� + ��V�,�

−1 �� �11�

�For the sake of completeness we derive this result in Appendix B�. The dispersion of the symmetric mode 
 is modified by
the denominator of its 
2 term; in practice since the Coulomb interaction U�q� is singular as q→0 this makes the symmetric
mode into a plasma mode, exactly as is known to occur in a single-band superconductor.47

Equation �11� shows that including Coulomb interactions does not alter the mass gap of the Leggett mode, as the plasma
mode does not mix with the Leggett mode � at q=0. The net effect of the Coulomb terms on ��
 ,q� will be a modification
of the q2 term in the effective action of the Leggett mode. Integrating out 
, we obtain
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Sef f =� d
d2k��q���− q�N���
2 − 
0
2 − c��

2 �qx
2 − qy

2��1 +
c
�

4

c��
2 N��

qx
2 − qy

2


2

�1 − N

U�q��
+ q2c



2 �� + ��V�,�
−1 ��. �12�

Hence for small q ,
, in the presence of Coulomb interac-
tions, provided that limq→0


2

q2�1−N

U�q�� is finite, the net effect
is a modification of the effective velocity of the mode. The
above equation needs to be solved self-consistently to obtain
the mode dispersion. However, the limit q→0, which deter-
mines whether the Leggett mode is above or below the
particle-particle continuum, is unchanged from the case
without the Coulomb interaction.

III. RESULTS

Having established the general form of the effective ac-
tion of the Leggett mode, we now turn to a quantitative
evaluation of the coefficients in Eq. �4�. Our principle inter-
est will be what potential information the Leggett mode can
give about the form of the superconducting gap—in particu-
lar, we address the question of whether it can distinguish
between the popular extended s-wave gap and other plau-
sible pairing symmetries. Unfortunately, it is clear from our
equations that the Leggett mode properties depend on the
absolute value of the gap function, thereby preventing any
qualitative sensitivity of the mode to a sign change in the gap
function. We find that the clearest signature is the lifetime of
the Leggett mode as a function of doping—at low dopings
we find the Leggett mode to lie below the two-particle con-
tinuum; at higher doping the mode is always at higher ener-
gies than the two-particle continuum and hence will give at
best a very broad resonance.

A. Leggett mode gap

We begin by studying the Leggett mode gap 
0 for sev-
eral different gap functions with the objective of understand-
ing the qualitative differences expected between these in po-
tential experiments. In each case, the mode is expected to be
visible if it lies below the two-particle continuum, which is
set by 2 min	�	 �where the minimum is taken over the Bril-
louin zone�.

At q=0 and T=0, the symmetric and antisymmetric phase
oscillations decouple, and from the effective action Eq. �12�
the gap of the Leggett mode � is given by


0 =
−
M

N��

with M and N�� given by Eqs. �5� and �7�. Note that M �0
and N���0 so that the Leggett mode gap is well defined. We
can evaluate the coefficients N�� and M by integrating the
expressions in Eqs. �5� and �7� numerically over the Bril-
louin zone. We use the values of �� quoted in Eq. �2�.

Figure 1 shows the expected gap of the Leggett mode
for extended s-wave, standard s-wave, d-wave, and

�0 sin kxsin ky gaps, as a function of the filling fraction � and
the maximum gap magnitude �0. The general form of 
0 is
similar in all four cases: it increases with the superconduct-
ing gap �0 and has its lowest values at a filling of approxi-
mately �=0.4. For all four order parameters, we also find the
gap of the Leggett mode shows an academically interesting
chemical-potential dependence, droping sharply between
�=0.4 and �=0.5 independent of the momentum dependence
of the order parameter.

The qualitative features of these plots can be understood
by considering the form of Eqs. �5� and �7�. First, we see that

0 increases monotonically with �0, at a slightly less than
linear rate. Though naively both M and N�� scale quadrati-
cally with �0, N�� has divergences if E+

��� or E−
��� vanish;

these are cut off by the gap but nevertheless contribute the
major part of the integral. Consequently, N�� is well approxi-
mated by N���VFS /� with VFS the volume of the Fermi
surface. On the other hand, M vanishes at the Fermi surface
in the limit of small �, scaling approximately as M� in this
region. Hence the quantity 
 M

−N��
increases with �, with a

power close to �but slightly less than� 1.
The nonmonotonic dependence on �, which is similar in

all four cases, stems from the dependence of the shape and
volume of the Fermi surface on the chemical potential. As
stated above, the integral expression for N�� is dominated by
contributions near the Fermi surface. M, on the other hand,
receives significant contributions from the entire Brillouin
zone and is thus much less sensitive to the shape of the
Fermi surface.

To illustrate how these effects play out in our two-orbital
model, Fig. 2 plots the Fermi surface of the two-orbital
model in the normal state for the range of dopings consid-
ered here. Between �=0.4 and �=0.45, at precisely the locus
of the sharp drop in 
0 seen above, a new set of Fermi
pockets appears at the points ��� ,0� and �0, ��� as a sec-
ond pair of bands crosses the Fermi level in the normal state.
In the superconducting state this results in more areas where
the expressions for N�� are relatively large—in particular,
due to the much smaller Fermi velocity near the new
branches of the Fermi surface, the area over which N�� is
large increases sharply, leading to a sudden reduction
in 
0. Also worthy of note are the extremal values
��=0.3, ��0.6� at which the Fermi surface intersects with
the nodes of the extended s-wave gap. These account for the
nonmonotonic behavior of 
0 observed in both extended
s-wave and d-wave order parameters between �=0.3 and 0.4,
as the cutoff in the normal-state divergences of N�� grows
smaller. Though the application of our simple two-orbital
model at large fillings is not warranted, and the features dis-
cussed in this paragraph are model dependent, we expect
them to be accurate for gaps diagonal in the orbital basis
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inasmuch as the band structure given by the two-orbital
model is correct.

B. Observability of the Leggett mode

In order for the Leggett mode to give a sharp resonance in
experiments, it should lie below the two-particle continuum.

For the d-wave and sine-wave gaps, which are nodal for the
iron-based superconductors’ Fermi surfaces, this is obviously
never the case. For ordinary s-wave and extended s-wave
gaps, the position of the Leggett mode at q=0 relative to the
two-particle continuum depends on the values of � and �0.
Figure 3 plots distance between the gap of the Leggett mode
and the minimum energy of the two-particle continuum as a

FIG. 1. �Color online� Gap of the Leggett mode for �a� extended s-wave, �b� standard s-wave, �c� �=�0 sin kx sin ky, and �d� d-wave
superconducting gaps. The magnitude of 
0 in eV is indicated by the color map to the right of each figure with blue corresponding to regions
of smaller 
0 and red to regions of larger 
0. The vertical axis indicates the filling � with 1/2 filling corresponding to the undoped case; the
horizontal axis is the scale of the maximum magnitude of the gap in eV: we take �=�0�k.

�=0.5

�=0.60009

�=0.55002

�=0.65002

�=0.3001

�=0.40032

�=0.35002

�=0.45009

FIG. 2. �Color online� Plots of Fermi surface as a function of chemical potential for 0.3���0.65. The relevant filling fractions are
shown as � in the title of the figure. The electron pockets first appear at approximately �=0.4 and cross the nodal lines at �=0.6. The nature
of the hole pockets does not change substantially over the range shown here.
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function of �0 for both extended s-wave ��k=cos kx cos ky�
and standard s-wave ��k=1� gaps.

The principle difference between the two nodeless gaps is
the range of dopings over which the Leggett mode is ex-
pected to be observable. In the pure s-wave case, the two-
particle continuum is given by 2�0, independent of the shape
of the Fermi surface. Hence, as seen in Fig. 3�b�, the domi-
nant effect here is that the gap of the Leggett mode scales
sublinearly in �0, and hence becomes observable only at
large values of the gap. Its separation from the two-particle
continuum is extremely small at the small values of �0 ex-
pected to occur near half filling. �Away from half filling, the
gap of the Leggett mode lies above the two-particle con-
tinuum, as shown in the figure, due to the Fermi-surface
effects discussed above.� In the extended s-wave case, how-
ever, the minimum of the gap also depends on how close the
Fermi surface comes to the nodes of the gap function. Hence
the dependence on filling fraction here is more pronounced
�Fig. 3�a��; for all values of �0 the Leggett mode sits defini-
tively below the two-particle continuum in the interval
0.45���0.5. Further from half filling, where the nodes of
the extended s-wave gap sit closer to the Fermi surface, the
mode is never visible. 
0 is smaller overall in the extended
s-wave case, compensating for the fact that the minimum of
the two-particle continuum is de facto smaller than in the

standard s-wave case. Most notably, for the small values of
�0 expected near 1/2 filling, we expect the Leggett mode to
be below the two-particle continuum in the extended s-wave
case

C. Dispersion of the Leggett mode for extended s-wave gap

We now return to the general form of the effective action
for the phase degrees of freedom and analyze the structure of
its modes at small q. In the absence of the Coulomb interac-
tion, the form of the dispersion is effectively characterized
by

w2 =
1

2
�q2�c



2 + c��
2 � + 
0

2

�
�q2�c��
2 − c



2 � + 
0
2�2 +

4c
�
4

N

N��

q4 cos2 2�� ,

�13�

where � is the angle in the �kx ,ky� plane. If c
� vanishes, we
retrieve the gapless Goldstone mode and the gapped Leggett
mode. From Eq. �12�, we find that adding the Coulomb term
modifies this according to

w2 =
1

2
��c



2 �1 – 4N

U�q�� + c��
2 �q2 + 
0

2� �
1

2

�q2�c��

2 − c


2 �1 – 4N

U�q��� + 
0

2�2 +
4c
�

4 q4�1 – 4N

U�q��
N

N��

cos2�2�� .

�14�

In this case, taking the negative sign for U�q��q−1, �the
unscreened Coulomb interaction in two dimensions� results
in �2�0, indicating that the Goldstone mode has been re-
placed by a plasma mode. The structure of the Leggett mode
is, however, largely unchanged by the presence of the Cou-

lomb interaction. In particular, we still have limq→− ��q�
=
0.

Figure 4�a� plots the dispersion relation 
�k� for the low-
energy modes for several values of �0 ,�. As we have kept
only terms to quadratic order in q ,
, we expect this to be

FIG. 3. �Color online� Distance between the Leggett mode and two-particle continuum for �a� extended s-wave and �b� ordinary s-wave
gaps, as a function of filling fraction � and gap magnitude �0 in eV. Dark maroon area indicates regions where the Leggett mode lies above
the two-particle continuum. Blue regions indicate maximum distance from the two-particle continuum. The vertical colorbar indicates the
energy scale of these differences, as a fraction of the two-particle continuum 2 min �0.
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valid for small q and have restricted the range of the plots
accordingly. The important feature to note is that the velocity
anisotropy, due to the off-diagonal terms c
��qx

2−qy
2�, is rela-

tively small and the dispersion is approximately rotationally
invariant. Because of this, the dispersion relation of the Leg-
gett mode is well characterized by the gap 
0 �cf. Sec. III A�
and the velocity v� limq→� ��q�. This latter is plotted for
the extended s-wave gap in Fig. 4�b�.

IV. CONCLUSIONS

We have obtained the fluctuation action for the supercon-
ducting phase collective modes of a two-orbital model for
iron-based superconductors with particular emphasis on the
antisymmetric Leggett mode. By fixing the parameters of the
band structure, our calculation has identified the range of
doping and superconducting gap magnitude over which the
undamped Leggett mode exists below the two-particle con-
tinuum. As the Leggett mode’s visibility increases with the
magnitude of the superconducting gap, this result also sug-
gests that if the bandwidth is narrower, there is a higher
possibility of observing the undamped Leggett mode. There-
fore, a strong renormalization of bands could enhance the
existence of an undamped Leggett mode. Unfortunately, the
mode and its dispersion are insensitive to the sign of the
order parameter on Fermi surfaces, and the mode does not
qualitatively distinguish between the sign-changed s-wave
and a normal s-wave superconductors. However, we find that
quantitative characteristics of the mode can, in principle, dis-
tinguish between such different pairing symmetries. First, we
find that the Leggett mode does lie below the two-particle
continuum, near half filling and sufficiently deep in the su-
perconducting region, for the extended as well as normal
s-wave gap. This is distinct from the case of nodal gaps,
where low-energy quasiparticles are always expected to

broaden the Leggett mode resonance. Second, we find that
the difference in signatures between the two kinds of s-wave
pairing symmetry investigated here is subtle, but that the
extended s-wave gap is visible over a narrower range in dop-
ing, but further below the two-particle continuum over much
of its range of detectability. This difference comes from the
different doping dependence of the two s-wave gap func-
tions: unlike the normal, sign-unchanging s-wave gap, the s�

order parameter will most likely change upon doping as the
Fermi surfaces become closer to the line of zeroes that a
sign-changing gap should have in the Brillouin zone. This
gap variation upon doping is present in both strong and weak
coupling models.20 In this situation, the Leggett mode will
move from a relatively sharp mode below the two-particle
continuum into a strongly damped mode above the two-
particle continuum as doping is increased. This quantitative
change can, in principle, be observed in experiments.

It has been claimed that the Leggett mode has been ob-
served in MgB2 by Raman scattering49 and point-contact
transport measurements,50 although the energies of the Leg-
gett mode measured in the two experiments are different.
Reference 51 found that in the weak-coupling treatment of
superconductors with an s� gap, however, the A1g Leggett
mode does not couple to Raman scattering. The analysis car-
ried out here relies heavily on the fact that iron-based super-
conductors are more strongly coupled than MgB2, and that
the superconducting phase is thus well described by consid-
ering the orbital, rather than the band, basis. This leads to a
result which differs from that of the weakly coupled ap-
proach in two ways. First, the strong-coupling approach sug-
gests that the Leggett mode should be observable in Raman
spectra. Second, in the strong-coupling treatment, the differ-
ent orbital symmetries should be kept explicitly when deter-
mining the relevant Raman channels. For our model, the
Leggett mode is caused by an oscillation between the con-
densates involving the scattering of a pair of dxz-orbital elec-
trons into a pair of dyz-orbital electrons. Such a process

FIG. 4. �Color online� Velocity of the dispersion relations 
 vs q as a function of filling � and gap magnitude �0 for the extended s-wave
gap �=�0 cos kx cos ky. For small q, the qualitative shape of the dispersion �a� �shown at �0=0.1, �=0.4� does not depend strongly on
either the form of U or the precise choice of �0 and �. However, the velocity, plotted as a function of �0 and � in �b�, is sharply sensitive
to the Leggett gap and chemical potential. In particular, the magnitude of the velocity increases sharply as the filling fraction decreases.
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causes a relative density fluctuation, �n=nxz−nyz, between
two orbitals, which belongs to the B1g irreducible represen-
tation of the point group �D4h� of the crystals. Therefore, the
Leggett mode is a B1g mode in this orbital-based model and
should exist in the B1g channel in Raman-scattering experi-
ments. �Without the orbital characters, the Leggett mode
should be a pure A1g mode, as is the case in MgB2 �Ref. 49��.
Thus, observing the Leggett mode in channels other than A1g
should provide important evidence about the orbital structure
of condensed pairs in the iron-based superconductors.
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APPENDIX A: CALCULATING THE PHASE-ONLY
EFFECTIVE ACTION

We begin by deriving the effective phase-only action for a
generic Hamiltonian of the form

H = �
�,�,r,r�

�
�=↑,↓

c�,r,�
† ���r,r���� − �����c�,r�,�

+ V�,��r;r��b�,r
† b�,r� + ieU�r − r���r�r�. �A1�

Here � ,� are orbital indices, V is the superconducting inter-
action �in our model, a spin-spin antiferromagnetic interac-
tion decoupled in the Cooper channel to give us
cos�kx�cos�ky� pairing�, and U is the Coulomb interaction.

The density is given by �r=���c�,r,�
† c�,r,� and the supercon-

ducting bilinear is b�,r
† =c�,r,↑

† c�,r,↓
† .

We may decouple the two four-fermion interactions by
means of two Hubbard-Stratonovich transformations. This
decoupling gives the action

S = �
�,�,r,r�

��
�

c�,r,�
† ���/�� − ����,� + ��,��r,r���c�,r�,�

− �r,r��	�rb�,r� + 	�r
† b�,r�

† � − ie�r,r���r�r� + �r
��r��

− 	�r
† V�,�

−1 �r;r��	�r� − �rU�r − r��−1�r�
 , �A2�

where 	 is the Hubbard-Stratonovich field associated with
the superconducting interaction and � is associated with the
Coulomb interaction.

In computing this effective action, we follow the method
of Ref. 47 to isolate the action for the phase degrees of
freedom. That is, taking 	�r=��re

i���r�, we perform the
gauge transformation

c�,r,� → ei���r�/2c�,r,� �A3�

to absorb all terms involving the phase of the superconduct-
ing order parameter into the first term of Eq. �A2�. We then
have

S = �
�,�,r,r�

��
�

c�,r,�
† e−i���r�/2���/�� − ����,� + ��,��r,r���

�c�,r�,�ei���r��/2 − �r,r����r�b�,r� + b�,r�
† ��

− ie�r,r���r�r� + �r
��r��

− 	�r
† V�,�

−1 �r;r��	�r� − �rU�r − r��−1�r�
 . �A4�

It is convenient to re-express the kinetic terms as

�
�,�,r,r�

�c�,r,↑
† e−i���r�/2���/�� − ����,� + ��,��r,r���c�,r�,↑e

i���r��/2 − c�,r,↓e
−i���r��/2��− �/�� − ����,� + ��,��r�,r��c�,r�,↓

† ei���r�/2

+ ��,��r,r�e
−i���r�/2���/�� − �� + ��,��r�,r��ei���r��/2� . �A5�

The first two terms can now be combined with the rest of the
fermionic action can be expressed in matrix form in the BCS
basis. The final line of Eq. �A5� gives a separate contribution
to the action, which can be expressed, to quadratic order in
� ,�r�

� d2rd�� i

2

�

��

���r� +� d2k�1

2

�

�ri

���r�
�

�ki

��,�

−
1

8
���r�

�2

�ri
�rj

���r�
�2

�ki
�kj

��,��k��
 . �A6�

The first term is a total derivative and will not contribute to
the dynamics of the phase-only effective action. The second
term in any case vanishes, as v is odd over the Brillouin
zone. Hence only the last term appears in the effective ac-
tion.

As we are interested in the dynamics of the phase degrees
of freedom, we replace ��,r by its mean-field value. For the
time being, we drop the Coulomb terms by setting U
=0, �=0; these terms are discussed in Sec. II D. We further
consider only the slowly varying phase fluctuations. This al-
lows us to expand the exponentials of the fermionic terms in
Eq. �A4� using
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e−i/2����r�−���r��� � 1 −
i

2
����r� − ���r���

−
1

4
����r� − ���r���2e−i/2��1�r�−�2�r���

� e−i/2�0�1 −
i

2
��1�r� − �2�r�� − �0�

−
1

4
����r� − ���r�� − �0�2
 , �A7�

where we have explicitly separated out the possible back-
ground expectation value of the phase difference �0 between
the gaps. In practice �0=0 is set by the mean-field equations.

Defining �r
†= �c1,r,↑

† ,c1,r,↓ ,c2,r,↑
† ,c2,r,↓�, we may now ex-

press the first two terms in Eq. �A5�, after Fourier transform-
ing, as

SFermi =� d�1d�2
d2k1

4�2

d2k2

4�2 �k1,�1

† G−1�k1,k2,i�1,i�2��k2,�2

�A8�

with

G−1�k1,k2,i�1,i�2� = G0
−1�k1,�1��q,0�
,0 + ��k1,k2,i�1,i�2� ,

�A9�

where here q�k1−k2 ,
��1−�2. We have

G0
−1�k,�� =�

i� + �x �1 �xy 0

�1 i� − �x 0 − �xy

�xy 0 i� + �y �2

0 − �xy �2 i� − �y

� ,

�A10�

where ������k� is the kinetic energy in the orbital basis
and ������k� is the momentum-dependent superconduct-
ing gap in each orbital. The second part of Eq. �A9� is given
by

��k,q,i�,i
� = −



2
��1�z 0

0 �2�z
� +

i

2
� �1�q��x��0 ���xy�k1� − �1�xy�k2���0

��1�xy�k1� − �2�xy�k2���0 �2�q��y��0
� ,

−
1

8 �
k3,i�3

��1�k3,i�3� �2�q − k3,i�
 − �3�����q,k3

�2� ��x��z 0

0 �q,k3

�2� ��x��z
���1�q − k3,i�
 − �3��

�2�q − k3,i�
 − �3�� � ,

−
1

8 �
k3,i�3

� 0 B�k1,i�1,k2,i�2,k3 . i�3��z

C�k1,i�1,k2,i�2,k3 . i�3��z 0
� , �A11�

where ������q , i
�, and we have defined the discrete derivatives

�q��� = ����k1� − ����k2� ,

�q
�2���� = ����k1� − ����k2 + k3� − ����k1 − k3� + ����k2� . �A12�

The off-diagonal terms quadratic in the phases are

B�k1,i�1,k2,i�2,k3,i�3� = ��2�k3,i�3��2�q − k3,i�
 − �3���xy�k1� − �2�k3,i�3��1�q − k3,i�
 − �3���xy�k2 + k3�

− �1�k3,i�3��2�q − k3,i�
 − �3���xy�k1 − k3� + �1�k3,i�3��1�q − k3,i�
 − �3���xy�k2�� ,

C�k1,i�1,k2,i�2,k3,i�3� = ��1�k3,i�3��1�q − k3,i�
 − �3���21�k1� − �1�k3,i�3��2�q − k3,i�
 − �3���xy�k2 + k3�

− �2�k3,i�3��1�q − k3,i�
 − �3���xy�k1 − k3� + �2�k3,i�3��2�q − k3,i�
 − �3���xy�k2�� . �A13�

Thus in our treatment, the block diagonal terms involve only
discrete differences of the band energies, which will become
derivatives when the momentum of the phase variables is
small. The off-diagonal terms contribute, as well as such

differences, a term which is finite at q=0 �or k1=k2�. Hence
the gap of the Leggett mode is, in the absence of interorbital
pairing, generated by the kinetic mixing between the two
orbitals.
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To obtain the effective action, we integrate out the fermi-
ons in Eq. �A8�. In practice, we must evaluate the result
perturbatively in �. Specifically, we have

Sef f = SMF − Tr ln�1 − G0��

� SMF + Tr�G0�� +
1

2
Tr�G0�G0�� , �A14�

where SMF is the mean-field action, from which we self-

consistently determine the values of �1 ,�2. Here we will
evaluate the low-energy, long-wavelength limit of the effec-
tive action Eq. �A14� by keeping terms to quadratic order in
q ,
 and ���q ,
�.

1. Evaluating TrG0� and TrG0�G0�

For reference, here we give a more detailed account of the
calculation in Sec. II. The separate expressions for the two
traces are

Tr�G0�� =� d2k

�2��2�−
�xy

4
���q,i
���− q,− i
���1 −

�xy

�E+ − E−�E+
���E−

��� �E−
���E+ − E+

���E−��
 −� d2k

�2��2� qiqj

8
��1�q� �2�q� �

��mij
�1��1 −

E+�E+ − �y�
E+

����E+ − E−�
+

E−�E− − �y�
E−

����E+ − E−�� mij
�12� �xy

�E+ − E−�� E+

E+
��� −

E−

E−
����

mij
�12� �xy

�E+ − E−�� E+

E+
��� −

E−

E−
���� mij

�2��1 −
E+�E+ − �x�

E+
����E+ − E−�

+
E−�E− − �x�

E−
����E+ − E−�� ���1�− q�

�2�− q� �� , �A15�

where mij
����

�2��

�ki�kj
, and we define ��q�=�1�q�−�2�q�. We have dropped the linear term in 
, because it is a total derivative and

hence should not contribute to the action. Here all �, E, and � are evaluated at the momentum k to be integrated over. Note
that we have also included the quadratic terms in the last line of Eq. �A5�.

Evaluating Tr�G0�G0�� gives

1

2
Tr�G�G�� = −


2

8
�
�q���q���N

 0

0 N��
��
�− q�

��− q� � +� d2k

�2��2� �xy
2

4
��q���− q�

− E+
���E−

��� + �2 + E+E−

E+
���E−

����E+
��� + E−

���� 

+

1

8

2qiqj

�E+
��� + E−

�����E+ − E−�2�1 −
�2 + E+E−

E+
���E−

��� ��
�q���q��

���− ��xy
2 +

1

2
��x − �y�2�vi

�xy�v j
�xy� − �xy

2 vi
v j

�xy

2

2
�vi
v j� + v j
vi��

�xy
2

2
�vi
v j� + v j
vi�� ��xy

2 −
1

2
��x − �y�2�vi

�xy�v j
�xy� − �xy

2 vi�v j�
�

+ � 0 −
�xy��x − �y�

4
�vi

�xy�v j
�
� + v j

�xy�vi
�
��

−
�xy��x − �y�

4
�vi

�xy�v j
�
� + v j

�xy�vi
�
�� −

�xy��x − �y�
2

�vi
�xy�v j

��� + v j
�xy�vi

���� � + � 0 �̃
�

�̃
� �̃��

���
�− q�
��− q� � ,

�A16�

where v
i����x+�y� /�ki ,v�i����x−�y� /�ki. Here �̃�� are terms which come from expanding traces involving B in Eq. �A13�
to quadratic order in q.

Combining the mass terms from Eqs. �A15� and �A16� gives the total mass term

M =� d2k

�2��2� 4�2�xy
2

E+
���E−

����E+
��� + E−

����
− 2�xy
 �� d2k

�2��2

4�2�xy
2

E+
���E−

����E+
��� + E−

����
, �A17�

where the second equality holds because in practice �xy averages to 0 over the Brillouin zone.
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In simplified form, the momentum-dependent terms are

�N

c

,ij
2 c
�,ij

2

c
�,ij
2 N��c��,ij

2 � =
1

8
� d2k

�2��2�−
1

�E+ − E−�� E+

E+
��� −

E−

E−
�����mij

�xx��x − 2mij
�xy��xy + mij

�yy��y mij
�xx��x − mij

�yy��y

mij
�xx��x − mij

�yy��y mij
�xx��x + 2mij

�xy��xy + mij
�yy��y

�
+

2

�E+
��� + E−

�����E+ − E−�2�1 −
�2 + E+E−

E+
���E−

��� �
���− ��xy

2 +
1

2
��x − �y�2�vi

�xy�v j
�xy� − �xy

2 vi
v j

�xy

2

2
�vi
v j� + v j
vi��

�xy
2

2
�vi
v j� + v j
vi�� ��xy

2 −
1

2
��x − �y�2�vi

�xy�v j
�xy� − �xy

2 vi�v j�
�

+� 0 −
�xy��x − �y�

4
�vi

�xy�v j
�
� + v j

�xy�vi
�
��

−
�xy��x − �y�

4
�vi

�xy�v j
�
� + v j

�xy�vi
�
�� −

�xy��x − �y�
2

�vi
�xy�v j

��� + v j
�xy�vi

���� � + � 0 �̃
�

�̃
� �̃��

��� .

�A18�

APPENDIX B: EFFECTIVE ACTION WITH COULOMB
TERMS

Including terms generated by the Coulomb repulsion
modifies the interaction term � of the full fermion propaga-
tor Eq. �A11� according to46

� = �3 � 1�i
i



2
− ie�� + �3 � �3i


�

2
+ �kin� , �B1�

where �kin involves only spatial derivatives of the phases �1
and �2. Here � is the Hubbard-Stratonovich field associated
with the Coulomb interaction. The form of the coupling for �
to fermions can be deduced from gauge invariance: the phase
�i is obviously a gauge-dependent quantity, and the gauge-
invariant degrees of freedom are the combinations ��� /2
−e�−eA0 and �� /2−e /cA.47 Hence the effective action for
� is the same as that for ��� / �2e�. Equation �B1� indicates

that � couples in all cases like the time derivative of the
symmetric component of the phase fluctuations.

To obtain the full effective action for the phase-only
modes in the presence of Coulomb interactions, we first in-
tegrate out the fermions, giving an effective action for the
three Hubbard-Stratonovich fields 
 ,� ,�. There are two rel-
evant contributions: from TrG�, we obtain

− ie��q�Tr���3 � 1�Gk−q� = − ie��q���k−q� �B2�

which cancels the first-order term in � in the effective action
Eq. �A2�.

From TrG�G�, we obtain contributions whose coeffi-
cients are the same as the contributions from the time deriva-
tives of 
. In particular, as the coefficients of the cross terms
in q ,
 from traces G�G� all vanish, the couplings between
� and 
 ,� depend only on 
. Hence the effective action for
the fields 
 ,� ,� has the form

Sef f =� d
d2q�
 � � ��N

�
2 − c


2 q2� c
�

2 �qx
2 − qy

2� − 2
N



c
�
2 �qx

2 − qy
2� N���
2 − 
0

2 − c��
2 q2� 0

− 2
N

 0 U−1�q� + 4N



��


�

�
� + ��V�,�

−1 ��, �B3�
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where the coefficients N ,c are given in Eqs. �5�, �A15�, and
�A16�. The dispersion relation is given by finding the
values of q ,
 at which M is singular. Depending on
the values of the parameters, M may have one or two
modes which are finite as q→0. One of these is the
gapped Leggett mode; the other is a soundlike mode

�the Carlson-Goldman mode� which we find to be absent
at T=0, consistent with Ref. 47. The third mode is, of
course, the plasma mode, which does not appear in the
low-energy spectrum. To study only the phase modes,
we may equivalently integrate out � and 
 to obtain
Eq. �11�.
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