9 research outputs found

    The genetic bases for non-syndromic hearing loss among Chinese

    No full text
    Deafness is an etiologically heterogeneous trait with many known genetic, environmental causes or a combination thereof. The identification of more than 120 independent genes for deafness has provided profound new insights into the pathophysiology of hearing. However, recent findings indicate that a large proportion of both syndromic and non-syndromic forms of deafness in the Chinese population are caused by defects in a small number of genes. Studies of the genetic epidemiology and molecular genetic features revealed that there is a clear relevance of genes causing deafness in Chinese deaf patients as well as a unique spectrum of common and rare deafness gene mutations in the Chinese population. This review is focused on the genetic aspects of non-syndromic and mitochondrial deafness, in which unique molecular genetic features of hearing impairment have been identified in the Chinese population. The current China population is approximately 1.3 billion. It is estimated that 30 000 infants are born with congenital sensorineural hearing loss each year. Better understanding of the genetic causes of deafness in the Chinese population is important for accurate genetics counseling and early diagnosis for timely intervention and treatment options

    Schwann cell interactions with axons and microvessels in diabetic neuropathy

    No full text
    The prevalence of diabetes worldwide is at pandemic levels, with the number of patients increasing by 5% annually. The most common complication of diabetes is peripheral neuropathy, which has a prevalence as high as 50% and is characterized by damage to neurons, Schwann cells and blood vessels within the nerve. The pathogenic mechanisms of diabetic neuropathy remain poorly understood, impeding the development of targeted therapies to treat nerve degeneration and its most disruptive consequences of sensory loss and neuropathic pain. Involvement of Schwann cells has long been proposed, and new research techniques are beginning to unravel a complex interplay between these cells, axons and microvessels that is compromised during the development of diabetic neuropathy. In this Review, we discuss the evolving concept of Schwannopathy as an integral factor in the pathogenesis of diabetic neuropathy, and how disruption of the interactions between Schwann cells, axons and microvessels contribute to the disease

    Iron-Catalyzed C–C Cross-Couplings Using Organometallics

    No full text
    corecore