10,156 research outputs found

    Charge collective modes in an incommensurately modulated cuprate

    Get PDF
    We report the first measurement of collective charge modes of insulating Sr14Cu24O41 using inelastic resonant x-ray scattering over the complete Brillouin zone. Our results show that the intense excitation modes at the charge gap edge predominantly originate from the ladder-containing planar substructures. The observed ladder modes (E vs. Q) are found to be dispersive for momentum transfers along the "legs" but nearly localized along the "rungs". Dispersion and peakwidth characteristics are similar to the charge spectrum of 1D Mott insulators, and we show that our results can be understood in the strong coupling limit (U >> t_{ladder}> t_{chain}). The observed behavior is in marked contrast to the charge spectrum seen in most two dimensional cuprates. Quite generally, our results also show that momentum-tunability of inelastic scattering can be used to resolve mode contributions in multi-component incommensurate systems.Comment: 4+ pages, 5 figure

    KINETIC COMPARISON BETWEEN HIGH-IMPACT AND LOW-IMPACT STEP AEROBIC DANCES

    Get PDF
    Step aerobic dance is one of the most popular aerobic exercises. There are two kinds of aerobic dances, high-impact (HI) and low-impact (LI). High-impact aerobic dance is defined as the exercise involving bouncing, hopping or jumping in which both feet are often taken off the ground. Low-impact aerobic dance is defined as the exercise in which there is always one foot on the ground during the exercise. One of the major causes of sports injury in aerobic dance is overuse injuries of the lower extremity (60%; Francis et al., 1985; Mutoh et al., 1988). This high injury rate in aerobic dance may be due to the repetitive, high joint loads in the lower extremities. Therefore, the purpose of this study was to evaluate the effect of impact level on the joint kinetics of lower limb in step aerobic dance

    Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout

    Get PDF
    As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic pro- files, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement

    A topological insulator surface under strong Coulomb, magnetic and disorder perturbations

    Full text link
    Three dimensional topological insulators embody a newly discovered state of matter characterized by conducting spin-momentum locked surface states that span the bulk band gap as demonstrated via spin-resolved ARPES measurements . This highly unusual surface environment provides a rich ground for the discovery of novel physical phenomena. Here we present the first controlled study of the topological insulator surfaces under strong Coulomb, magnetic and disorder perturbations. We have used interaction of iron, with a large Coulomb state and significant magnetic moment as a probe to \textit{systematically test the robustness} of the topological surface states of the model topological insulator Bi2_2Se3_3. We observe that strong perturbation leads to the creation of odd multiples of Dirac fermions and that magnetic interactions break time reversal symmetry in the presence of band hybridization. We also present a theoretical model to account for the altered surface of Bi2_2Se3_3. Taken collectively, these results are a critical guide in manipulating topological surfaces for probing fundamental physics or developing device applications.Comment: 14 pages, 4 Figures. arXiv admin note: substantial text overlap with arXiv:1009.621

    Controlling orbital moment and spin orientation in CoO layers by strain

    Get PDF
    We have observed that CoO films grown on different substrates show dramatic differences in their magnetic properties. Using polarization dependent x-ray absorption spectroscopy at the Co L2,3_{2,3} edges, we revealed that the magnitude and orientation of the magnetic moments strongly depend on the strain in the films induced by the substrate. We presented a quantitative model to explain how strain together with the spin-orbit interaction determine the 3d orbital occupation, the magnetic anisotropy, as well as the spin and orbital contributions to the magnetic moments. Control over the sign and direction of the strain may therefore open new opportunities for applications in the field of exchange bias in multilayered magnetic films

    Experimental Verification of Acoustic Waveform and VSP Seismic Tube Wave Measurements of Fracture Permeability

    Get PDF
    A variety of established and experimental geophysical techniques was used to measure the vertical distribution of fracture permeability in a 229-meter deep borehole penetrating schist and quartz monzonite near Mirror Lake, New Hampshire. The distribution of fractures in the borehole was determined by acoustic borehole televiewer and other geophysical logs. Fracture permeability was estimated by application of two experimental methods: (1) Analysis of tube-wave-amplitude attenuation in acoustic full-waveform logs; and (2) interpretation of tube waves generated in vertical seismic profiles. Independent information on fracture permeability was obtained by means of packer-isolation flow tests and flowmeter measurement of vertical velocity distributions during pumping in the same borehole. Both experimental methods and packer-isolation-flow tests and flowmeter data indicated a single, near horizontal zone of permeability intersecting the borehole at a depth of about 45 meters. Smaller values of transmissivity were indicated for other fractures at deeper depths, with details of fracture response related to the apparent volume of rock represented by the individual measurements. Tube-wave amplitude attenuation in full-waveform acoustic logs, packer-isolation flow tests, and flowmeter measurements during pumping indicated transmissivity values for the upper permeability zone within the range of 0.6 to 10.0 centimeters squared per second. Vertical seismic-profile data indicated a relative distribution of fracture permeability in agreement with the other methods; however, the calculated values of transmissivity appeared to be too small. This disagreement is attributed to oversimplification of the model for fracture-zone compressibility used in the analysis of vertical seismic-profile data

    Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3

    Full text link
    Topological insulators are a recently discovered class of materials with fascinating properties: While the inside of the solid is insulating, fundamental symmetry considerations require the surfaces to be metallic. The metallic surface states show an unconventional spin texture, electron dynamics and stability. Recently, surfaces with only a single Dirac cone dispersion have received particular attention. These are predicted to play host to a number of novel physical phenomena such as Majorana fermions, magnetic monopoles and unconventional superconductivity. Such effects will mostly occur when the topological surface state lies in close proximity to a magnetic or electric field, a (superconducting) metal, or if the material is in a confined geometry. Here we show that a band bending near to the surface of the topological insulator Bi2_2Se3_3 gives rise to the formation of a two-dimensional electron gas (2DEG). The 2DEG, renowned from semiconductor surfaces and interfaces where it forms the basis of the integer and fractional quantum Hall effects, two-dimensional superconductivity, and a plethora of practical applications, coexists with the topological surface state in Bi2_2Se3_3. This leads to the unique situation where a topological and a non-topological, easily tunable and potentially superconducting, metallic state are confined to the same region of space.Comment: 12 pages, 3 figure
    • …
    corecore