176 research outputs found

    Disruption of HOX activity leads to cell death that can be enhanced by the interference of iron uptake in malignant B cells.

    Get PDF
    The HOX genes encode a family of transcription factors that are dysregulated in several malignancies and have been implicated in oncogenesis and cancer cell survival. Disruption of HOX protein function using the peptide HXR9 has shown anti-tumor effects against melanoma, lung cancer and renal cancer. In this report, we evaluated the expression of all 39 HOX genes in a panel of six malignant B-cell lines, including multiple myeloma cells and found different levels of expression of HOX family members suggesting that they also have a role in malignant B-cell survival. We show that disrupting HOX function using the peptide HXR9 induces significant cytotoxicity in the entire panel of cell lines. Importantly, we found that the cytotoxic effects of HXR9 can be enhanced by combining it with ch128.1Av, an antibody-avidin fusion protein specific for the human transferrin receptor 1 (CD71). Iron starvation induced by the fusion protein contributes to the enhanced effect and involves, at least in part, the induction of a caspase-independent pathway. These results show the relevance of HOX proteins in malignant B-cell survival and suggest that our therapeutic strategy may be effective in the treatment of incurable B-cell malignancies such as multiple myeloma

    The PERK Inhibitor GSK2606414 Enhances Reovirus Infection in Head and Neck Squamous Cell Carcinoma via an ATF4-Dependent Mechanism.

    Get PDF
    Reovirus type 3 Dearing (reovirus) is a tumor-selective oncolytic virus currently under evaluation in clinical trials. Here, we report that the therapeutic efficacy of reovirus in head and neck squamous cell cancer can be enhanced by targeting the unfolded protein response (UPR) kinase, protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). PERK inhibition by GSK2606414 increased reovirus efficacy in both 2D and 3D models in vitro, while perturbing the normal host cell response to reovirus-induced endoplasmic reticulum (ER) stress. UPR reporter constructs were used for live-cell 3D spheroid imaging. Profiling of eIF2a-ATF4, IRE1a-XBP1, and ATF6 pathway activity revealed a context-dependent increase in eIF2a-ATF4 signaling due to GSK2606414. GSK2606414 blocked eIF2a-ATF4 signaling because of the canonical ER stress agent thapsigargin. In the context of reovirus infection, GSK2606414 induced eIF2a-ATF4 signaling. Knockdown of eIF2a kinases PERK, GCN2, and PKR revealed eIF2a-ATF4 reporter activity was dependent on either PERK or GCN2. Knockdown of ATF4 abrogated the GSK2606414-induced increase in reovirus protein levels, confirming eIF2a-ATF signaling as key to the observed phenotype. Our work identifies a novel approach to enhance the efficacy and replication of reovirus in a therapeutic setting

    Combination of a fusogenic glycoprotein, pro-drug activation and oncolytic HSV as an intravesical therapy for superficial bladder cancer

    Get PDF
    Background: There are still no effective treatments for superficial bladder cancer (SBC)/non-muscle invasive bladder cancer. Following treatment, 20% of patients still develop metastatic disease. Superficial bladder cancer is often multifocal, has high recurrences after surgical resection and recurs after intravesical live Bacillus Calmette-Guérin. Oncovex GALV/CD, an oncolytic herpes simplex virus-1, has shown enhanced local tumour control by combining oncolysis with the expression of a highly potent pro-drug activating gene and the fusogenic glycoprotein. Methods: In vitro fusion/prodrug/apoptotic cell-based assays. In vivo orthotopic bladder tumour model, visualised by computed microtomography. Results: Treatment of seven human bladder carcinoma cell lines with the virus resulted in tumour cell killing through oncolysis, pro-drug activation and glycoprotein fusion. Oncovex GALV/CD and mitomycin C showed a synergistic effect, whereas the co-administration with cisplatin or gemcitabine showed an antagonistic effect in vitro. Transitional cell cancer (TCC) cells follow an apoptotic cell death pathway after infection with Oncovex GALV/CD + with or without 5-FC. In vivo results showed that intravesical treatment with Oncovex GALV/CD prodrug (5-FC) reduced the average tumour volume by over 95% compared with controls.Discussion: Our in vitro and in vivo results indicate that Oncovex GALV/CD can improve local tumour control within the bladder, and potentially alter its natural history

    The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miR-221&222-c-FOS pathway.

    Get PDF
    Cutaneous melanoma is the fastest increasing cancer worldwide. Although several molecular abnormalities have been associated with melanoma progression, the underlying mechanisms are still largely unknown and few targeted therapies are under evaluation. Here we show that the HOXB7/PBX2 dimer acts as a positive transcriptional regulator of the oncogenic microRNA-221 and -222. In addition, demonstrating c-FOS as a direct target of miR-221&222, we identify a HOXB7/PBX2→miR-221&222 →c-FOS regulatory link, whereby the abrogation of functional HOXB7/PBX2 dimers leads to reduced miR-221&222 transcription and elevated c-FOS expression with consequent cell death. Taking advantage of the treatment with the peptide HXR9, an antagonist of HOX/PBX dimerization, we recognize miR-221&222 as effectors of its action, in turn confirming the HXR9 efficacy in the treatment of human melanoma malignancy, whilst sparing normal human melanocytes. Our findings, besides suggesting the potential therapeutic of HXR9 or its derivatives in malignant melanoma, suggest the disruption of the HOXB7/PBX2 complexes, miR-221&222 inhibition or even better their combination, as innovative therapeutic approaches

    Update on HER-2 as a target for cancer therapy: The ERBB2 promoter and its exploitation for cancer treatment

    Get PDF
    Overexpression of the ERBB2 proto-oncogene is associated with amplification of the gene in breast cancer but increased activity of the promoter also plays a significant role. Members of two transcription factor families (AP-2 and Ets) show increased binding to the promoter in over-expressing cells. Consequently, strategies have been devised to target promoter activity, either through the DNA binding sites for these factors, or through another promoter sequence, a polypurine-polypyrimidine repeat structure. The promoter has also been exploited for its tumour-specific activity to direct the accumulation of cytotoxic compounds selectively within cancer cells. Our current understanding of the ERBB2 promoter is reviewed and the status of these therapeutic avenues is discussed

    Synergistic effects of oncolytic reovirus and docetaxel chemotherapy in prostate cancer

    Get PDF
    Reovirus type 3 Dearing (T3D) has demonstrated oncolytic activity in vitro, in in vivo murine models and in early clinical trials. However the true potential of oncolytic viruses may only be realized fully in combination with other modalities such as chemotherapy, targeted therapy and radiotherapy. In this study, we examine the oncolytic activity of reovirus T3D and chemotherapeutic agents against human prostate cancer cell lines, with particular focus on the highly metastatic cell line PC3 and the chemotherapeutic agent docetaxel. Docetaxel is the standard of care for metastatic prostate cancer and acts by disrupting the normal process of microtubule assembly and disassembly. Reoviruses have been shown to associate with microtubules and may require this association for efficient viral replication

    Genetically modified lentiviruses that preserve microvascular function protect against late radiation damage in normal tissues.

    Get PDF
    Improvements in cancer survival mean that long-term toxicities, which contribute to the morbidity of cancer survivorship, are being increasingly recognized. Late adverse effects (LAEs) in normal tissues after radiotherapy (RT) are characterized by vascular dysfunction and fibrosis causing volume loss and tissue contracture, for example, in the free flaps used for immediate breast reconstruction after mastectomy. We evaluated the efficacy of lentivirally delivered superoxide dismutase 2 (SOD2) overexpression and connective tissue growth factor (CTGF) knockdown by short hairpin RNA in reducing the severity of LAEs in an animal model of free flap LAEs. Vectors were delivered by intra-arterial injection, ex vivo, to target the vascular compartment. LVSOD2 and LVshCTGF monotherapy before irradiation resulted in preservation of flap volume or reduction in skin contracture, respectively. Flaps transduced with combination therapy experienced improvements in both volume loss and skin contracture. Both therapies reduced the fibrotic burden after irradiation. LAEs were associated with impaired vascular perfusion, loss of endothelial permeability, and stromal hypoxia, which were all reversed in the treatment model. Using a tumor recurrence model, we showed that SOD2 overexpression in normal tissues did not compromise the efficacy of RT against tumor cells but appeared to enhance it. LVSOD2 and LVshCTGF combination therapy by targeted, intravascular delivery reduced LAE severities in normal tissues without compromising the efficacy of RT and warrants translational evaluation as a free flap-targeted gene therapy

    Reovirus exerts potent oncolytic effects in head and neck cancer cell lines that are independent of signalling in the EGFR pathway

    Get PDF
    Background: reovirus exploits aberrant signalling downstream of Ras to mediate tumor-specific oncolysis. Since ~90% squamous cell carcinomas of the head and neck (SCCHN) over-express EGFR and SCCHN cell lines are sensitive to oncolytic reovirus, we conducted a detailed analysis of the effects of reovirus in 15 head and neck cancer cell lines. Both pre- and post-entry events were studied in an attempt to define biomarkers predictive of sensitivity/resistance to reovirus. In particular, we analysed the role of EGFR/Ras signalling in determining virus-mediated cytotoxicity in SCCHN. Methods: to test whether EGFR pathway activity was predictive of increased sensitivity to reovirus, correlative analyses between reoviral IC50 by MTT assay and EGFR levels by western blot and FACS were conducted. Inhibition or stimulation of EGFR signalling were analysed for their effect on reoviral oncolysis by MTT assay, and viral growth by TCID50 assay. We next analysed the effects of inhibiting signalling downstream of Ras, by specific inhibitors of p38MAPK, PI3-K or MEK, on reoviral killing examined by MTT assay. The role of PKR in reoviral killing was also determined by blockade of PKR using 2-aminopurine and assaying for cell survival by MTT assay. The apoptotic response of SCCHN to reovirus was examined by western blot analysis of caspase 3 cleavage. Results: correlative analyses between reoviral sensitivity and EGFR levels revealed no association. Intermediate sub-viral and core particles showed the same infectivity/cytotoxicity as intact reovirus. Therefore, sensitivity was not determined by cell entry. In 4 cell lines, oncolysis and viral growth were both unaffected by inhibition or stimulation of EGFR signalling. Inhibition of signalling downstream of Ras did not abrogate reoviral oncolysis and, in addition, modulation of PKR using 2-aminopurine did not alter reovirus sensitivity in resistant cell lines. Caspase 3 cleavage was not detected in infected cells and oncolysis was observed in pan-caspase inhibited cells. Conclusions: in summary, reovirus is potently oncolytic in a broad panel of SCCHN cell lines. Attempts to define sensitivity/resistance by analysis of the EGFR/Ras/MAPK pathway have failed to provide a clear predictive biomarker of response. Further analysis of material from in vitro and clinical studies is ongoing in an attempt to shed further light on this issue

    Hypoxia and oxidative stress in breast cancer: Tumour hypoxia – therapeutic considerations

    Get PDF
    Conclusive research has shown that regions of acute/chronic hypoxia, which exist within the majority of solid tumours, have a profound influence on the therapeutic outcome of cancer chemotherapy and radiotherapy and are a strong prognostic factor of disease progression and survival. A strong argument therefore exists for assessing the hypoxic fraction of tumours, prior to patient treatment, and to tailor this treatment accordingly. Tumour hypoxia also provides a powerful physiological stimulus that can be exploited as a tumour-specific condition, allowing for the rationale design of hypoxia-activated anticancer drugs or novel hypoxia-regulated gene therapy strategies
    • …
    corecore