49 research outputs found

    Estrogen receptor α polymorphisms and postmenopausal breast cancer risk

    Get PDF
    Item does not contain fulltextBACKGROUND: The estrogen receptor alpha (ESR1) is a mediator of estrogen response in the breast. The most studied variants in this gene are the PvuII and XbaI polymorphisms, which have been associated to lower sensitivity to estrogen. We evaluated whether these polymorphisms were associated with breast cancer risk by means of an association study in a population of Caucasian postmenopausal women from the Rotterdam study and a meta-analysis of published data. METHODS: The PvuII and XbaI polymorphisms were genotyped in 3,893 women participants of the Rotterdam Study. Baseline information was obtained through a questionnaire. We conducted logistic regression analyses to assess the risk of breast cancer by each of the ESR1 genotypes. Meta-analyses of all publications on these relations were done by retrieving literature from Pubmed and by further checking the reference lists of the articles obtained. RESULTS: There were 38 women with previously diagnosed breast cancer. During follow-up, 152 were additionally diagnosed. The logistic regression analyses showed no difference in risk for postmenopausal breast cancer in carriers of the PvuII or XbaI genotypes neither in overall, incident or prevalent cases. No further evidence of a role of these variants was found in the meta-analysis. CONCLUSIONS: Our results suggest that the ESR1 polymorphisms do not play a role in breast cancer risk in Caucasian postmenopausal women

    A prediction model for underestimation of invasive breast cancer after a biopsy diagnosis of ductal carcinoma in situ: based on 2892 biopsies and 589 invasive cancers

    Get PDF
    Background: Patients with a biopsy diagnosis of ductal carcinoma in situ (DCIS) might be diagnosed with invasive breast cancer at excision, a phenomenon known as underestimation. Patients with DCIS are treated based on the risk of underestimation or progression to invasive cancer. The aim of our study was to expand the knowledge on underestimation and to develop a prediction model. Methods: Population-based data were retrieved from the Dutch Pathology Registry and the Netherlands Cancer Registry for DCIS between January 2011 and June 2012. Results: Of 2892 DCIS biopsies, 21% were underestimated invasive breast cancers. In multivariable analysis, risk factors were high-grade DCIS (odds ratio (OR) 1.43, 95% confidence interval (CI): 1.05–1.95), a palpable tumour (OR 2.22, 95% CI: 1.76–2.81), a BI-RADS (Breast Imaging Reporting and Data System) score 5 (OR 2.36, 95% CI: 1.80–3.09) and a suspected invasive component at biopsy (OR 3.84, 95% CI: 2.69–5.46). The predicted risk for underestimation ranged from 9.5 to 80.2%, with a median of 14.7%. Of the 596 invasive cancers, 39% had unfavourable features. Conclusions: The risk for an underestimated diagnosis of invasive breast cancer after a biopsy diagnosis of DCIS is considerable. With our prediction model, the individual risk of underestimation can be calculated based on routinely available preoperatively known risk factors (https://www.evidencio.com/models/show/1074)

    The Angio-Fibrotic Switch of VEGF and CTGF in Proliferative Diabetic Retinopathy

    Get PDF
    BACKGROUND: In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) cause blindness by neovascularization and subsequent fibrosis, but their relative contribution to both processes is unknown. We hypothesize that the balance between levels of pro-angiogenic VEGF and pro-fibrotic CTGF regulates angiogenesis, the angio-fibrotic switch, and the resulting fibrosis and scarring. METHODS/PRINCIPAL FINDINGS: VEGF and CTGF were measured by ELISA in 68 vitreous samples of patients with proliferative DR (PDR, N = 32), macular hole (N = 13) or macular pucker (N = 23) and were related to clinical data, including degree of intra-ocular neovascularization and fibrosis. In addition, clinical cases of PDR (n = 4) were studied before and after pan-retinal photocoagulation and intra-vitreal injections with bevacizumab, an antibody against VEGF. Neovascularization and fibrosis in various degrees occurred almost exclusively in PDR patients. In PDR patients, vitreous CTGF levels were significantly associated with degree of fibrosis and with VEGF levels, but not with neovascularization, whereas VEGF levels were associated only with neovascularization. The ratio of CTGF and VEGF was the strongest predictor of degree of fibrosis. As predicted by these findings, patients with PDR demonstrated a temporary increase in intra-ocular fibrosis after anti-VEGF treatment or laser treatment. CONCLUSIONS/SIGNIFICANCE: CTGF is primarily a pro-fibrotic factor in the eye, and a shift in the balance between CTGF and VEGF is associated with the switch from angiogenesis to fibrosis in proliferative retinopathy

    The genetic epidemiology of joint shape and the development of osteoarthritis

    Get PDF
    Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts for ~ 50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.

    Get PDF
    BACKGROUND: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. RESULTS: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. CONCLUSIONS: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk

    Osteoporosis: the current status of mesenchymal stem cell-based therapy

    Full text link
    corecore