70 research outputs found
A modified Trastuzumab antibody for the immunohistochemical detection of HER-2 overexpression in breast cancer
The immunohistochemical determination of HER-2 to identify patients with advanced breast cancer candidates for Trastuzumab treatment proved neither accurate nor fully reliable, possibly because none of the current reagents detects the specific antigenic site target of Trastuzumab. To circumvent this problem, we conjugated the NH2 groups of Trastuzumab with biotin, and the compound obtained, designated BiotHER, was added directly to tissue sections. Biotin-labelling was revealed with horseradish peroxidase-conjugated streptavidin. Specificity and sensitivity of BiotHER immunostaining with respect to HER-2 amplification were tested on 164 breast carcinoma samples. BiotHER staining was detected on the tumour cell membrane of 12% of all specimens and in 49% specimens with gene amplification, while absent in nonamplified tumours. Predictivity of BiotHER status with respect to the clinical outcome was analysed in 54 patients with HER-2 amplified advanced breast cancer treated with Trastuzumab plus chemotherapy. BiotHER staining, detected in 50% of tumours with HER-2 amplification, was an independent predictor of clinical outcome. In fact, BiotHER positivity was independently associated with increased likelihood of tumour response and reduced risk of tumour progression and death. Biotinylated Trastuzumab can thus be used for immunohistochemical detection of HER-2 overexpression in breast cancer, and has the potential to identify patients likely to benefit from Trastuzumab treatment
Molecular typing of mycobacterium tuberculosis isolates circulating in Jiangsu Province, China
<p>Abstract</p> <p>Background</p> <p>Globally, China is the second place with high burden of tuberculosis (TB). To explore the characteristics of the pathogens of <it>Mycobacterium tuberculosis </it>(MTB) circulating in this area is helpful for understanding and controlling the spread of the strains. Recent developments in molecular biology have allowed prompt identification and tracking specific strains of MTB spreading through the population.</p> <p>Methods</p> <p>Spacer-oligonucleotide typing (spoligotyping) and mycobacterial interspersed repetitive units variable number tandem repeat (MIRU-VNTR) were performed in combination to yield specific genetic profiles of 260 MTB strains isolated from 30 counties of Jiangsu province in China between June and July 2010. The spoligotyping results were in comparison to the world Spoligotyping Database of Institute Pasteur de Guadeloupe (SpolDB4). Drug susceptibility test (DST) was performed on all strains by proportion method on Lowenstein-Jensen (LJ) culture media.</p> <p>Results</p> <p>Based on the spoligotyping method, 246 strains displayed known patterns and 14 were absent in the database. Predominant spoligotypes belonged to the Beijing family (80.4%). By using the 24-loci VNTR typing scheme, 224 different patterns were identified, including 20 clusters and 204 unique patterns. The largest clade comprised 195 strains belonging to the Beijing family. The combination of spoligotyping and 24-loci MIRU-VNTR demonstrated maximal discriminatory power. Furthermore, we observed a significant association between Beijing family strains and drug-resistant phenotypes. The Beijing family strains presented increased risks for developing multi-drug resistant TB, with the OR (95% CI) of 11.07(1.45-84.50).</p> <p>Conclusions</p> <p>The present study demonstrated that Beijing family isolates were the most prevalent strains circulating in Jiangsu province of China. The utility of spoligotyping in combination with 24-loci MIRU-VNTR might be a useful tool for epidemiological analysis of MTB transmission.</p
MicroRNA Transcriptomic Analysis of Heterosis during Maize Seed Germination
Heterosis has been utilized widely in the breeding of maize and other crops, and plays an important role in increasing yield, improving quality and enhancing stresses resistance, but the molecular mechanism responsible for heterosis is far from clear. To illustrate whether miRNA-dependent gene regulation is responsible for heterosis during maize germination, a deep-sequencing technique was applied to germinating embryos of a maize hybrid, Yuyu22, which is cultivated widely in China and its parental inbred lines, Yu87-1 and Zong3. The target genes of several miRNAs showing significant expression in the hybrid and parental lines were predicted and tested using real-time PCR. A total of 107 conserved maize miRNAs were co-detected in the hybrid and parental lines. Most of these miRNAs were expressed non-additively in the hybrid compared to its parental lines. These results indicated that miRNAs might participate in heterosis during maize germination and exert an influence via the decay of their target genes. Novel miRNAs were predicted follow a rigorous criterion and only the miRNAs detected in all three samples were treated as a novel maize miRNA. In total, 34 miRNAs belonged to 20 miRNA families were predicted in germinating maize seeds. Global repression of miRNAs in the hybrid, which might result in enhanced gene expression, might be one reason why the hybrid showed higher embryo germination vigor compared to its parental lines
HER2 therapy: Molecular mechanisms of trastuzumab resistance
Trastuzumab is a monoclonal antibody targeted against the HER2 tyrosine kinase receptor. The majority of patients with metastatic breast cancer who initially respond to trastuzumab develop resistance within one year of treatment initiation, and in the adjuvant setting 15% of patients still relapse despite trastuzumab-based therapy. In this review, we discuss potential mechanisms of antitumor activity by trastuzumab, and how these mechanisms become altered to promote therapeutic resistance. We also discuss novel therapies that may improve the efficacy of trastuzumab, and that offer hope that the survival of breast cancer patients with HER2-overexpressing tumors can be vastly improved
- …