150 research outputs found

    Paraoxonase 2 protein is spatially expressed in the human placenta and selectively reduced in labour

    Get PDF
    Humans parturition involves interaction of hormonal, neurological, mechanical stretch and inflammatory pathways and the placenta plays a crucial role. The paraoxonases (PONs 1–3) protect against oxidative damage and lipid peroxidation, modulation of endoplasmic reticulum stress and regulation of apoptosis. Nothing is known about the role of PON2 in the placenta and labour. Since PON2 plays a role in oxidative stress and inflammation, both features of labour, we hypothesised that placental PON2 expression would alter during labour. PON2 was examined in placentas obtained from women who delivered by cesarean section and were not in labour and compared to the equivalent zone of placentas obtained from women who delivered vaginally following an uncomplicated labour. Samples were obtained from 12 sites within each placenta: 4 equally spaced apart pieces were sampled from the inner, middle and outer placental regions. PON2 expression was investigated by Western blotting and real time PCR. Two PON2 forms, one at 62 kDa and one at 43 kDa were found in all samples. No difference in protein expression of either isoform was found between the three sites in either the labour or non-labour group. At the middle site there was a highly significant decrease in PON2 expression in the labour group when compared to the non-labour group for both the 62 kDa form (p = 0.02) and the 43 kDa form (p = 0.006). No spatial differences were found within placentas at the mRNA level in either labour or non-labour. There was, paradoxically, an increase in PON2 mRNA in the labour group at the middle site only. This is the first report to describe changes in PON2 in the placenta in labour. The physiological and pathological significance of these remains to be elucidated but since PON2 is anti-inflammatory further studies are warranted to understand its role

    Metabolism of ticagrelor in patients with acute coronary syndromes.

    Get PDF
    Β© The Author(s) 2018Ticagrelor is a state-of-the-art antiplatelet agent used for the treatment of patients with acute coronary syndromes (ACS). Unlike remaining oral P2Y12 receptor inhibitors ticagrelor does not require metabolic activation to exert its antiplatelet action. Still, ticagrelor is extensively metabolized by hepatic CYP3A enzymes, and AR-C124910XX is its only active metabolite. A post hoc analysis of patient-level (n = 117) pharmacokinetic data pooled from two prospective studies was performed to identify clinical characteristics affecting the degree of AR-C124910XX formation during the first six hours after 180 mg ticagrelor loading dose in the setting of ACS. Both linear and multiple regression analyses indicated that ACS patients presenting with ST-elevation myocardial infarction or suffering from diabetes mellitus are more likely to have decreased rate of ticagrelor metabolism during the acute phase of ACS. Administration of morphine during ACS was found to negatively influence transformation of ticagrelor into AR-C124910XX when assessed with linear regression analysis, but not with multiple regression analysis. On the other hand, smoking appears to increase the degree of ticagrelor transformation in ACS patients. Mechanisms underlying our findings and their clinical significance warrant further research.Peer reviewedFinal Published versio

    Meiosis-Specific Loading of the Centromere-Specific Histone CENH3 in Arabidopsis thaliana

    Get PDF
    Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior

    Potentiation of Epithelial Innate Host Responses by Intercellular Communication

    Get PDF
    The epithelium efficiently attracts immune cells upon infection despite the low number of pathogenic microbes and moderate levels of secreted chemokines per cell. Here we examined whether horizontal intercellular communication between cells may contribute to a coordinated response of the epithelium. Listeria monocytogenes infection, transfection, and microinjection of individual cells within a polarized intestinal epithelial cell layer were performed and activation was determined at the single cell level by fluorescence microscopy and flow cytometry. Surprisingly, chemokine production after L. monocytogenes infection was primarily observed in non-infected epithelial cells despite invasion-dependent cell activation. Whereas horizontal communication was independent of gap junction formation, cytokine secretion, ion fluxes, or nitric oxide synthesis, NADPH oxidase (Nox) 4-dependent oxygen radical formation was required and sufficient to induce indirect epithelial cell activation. This is the first report to describe epithelial cell-cell communication in response to innate immune activation. Epithelial communication facilitates a coordinated infectious host defence at the very early stage of microbial infection

    Inflammatory Gene Regulatory Networks in Amnion Cells Following Cytokine Stimulation: Translational Systems Approach to Modeling Human Parturition

    Get PDF
    A majority of the studies examining the molecular regulation of human labor have been conducted using single gene approaches. While the technology to produce multi-dimensional datasets is readily available, the means for facile analysis of such data are limited. The objective of this study was to develop a systems approach to infer regulatory mechanisms governing global gene expression in cytokine-challenged cells in vitro, and to apply these methods to predict gene regulatory networks (GRNs) in intrauterine tissues during term parturition. To this end, microarray analysis was applied to human amnion mesenchymal cells (AMCs) stimulated with interleukin-1Ξ², and differentially expressed transcripts were subjected to hierarchical clustering, temporal expression profiling, and motif enrichment analysis, from which a GRN was constructed. These methods were then applied to fetal membrane specimens collected in the absence or presence of spontaneous term labor. Analysis of cytokine-responsive genes in AMCs revealed a sterile immune response signature, with promoters enriched in response elements for several inflammation-associated transcription factors. In comparison to the fetal membrane dataset, there were 34 genes commonly upregulated, many of which were part of an acute inflammation gene expression signature. Binding motifs for nuclear factor-ΞΊB were prominent in the gene interaction and regulatory networks for both datasets; however, we found little evidence to support the utilization of pathogen-associated molecular pattern (PAMP) signaling. The tissue specimens were also enriched for transcripts governed by hypoxia-inducible factor. The approach presented here provides an uncomplicated means to infer global relationships among gene clusters involved in cellular responses to labor-associated signals

    In vitro decidualisation of canine uterine stromal cells

    Get PDF
    BACKGROUND: The uterine response to the presence of embryos is poorly understood in the domestic dog (Canis familiaris). The intimate embryo-maternal cross-talk, which begins following the hatching of blastocysts and embryo attachment leads to strong structural and functional remodelling of the uterus. A part of this process is decidualisation, comprising morphological and biochemical changes that result in formation of maternal stroma-derived decidual cells. These are an integral part of the canine placenta materna, which together with the maternal vascular endothelium are the only cells of the canine endotheliochorial placenta able to resist trophoblast invasion. These cells are also the only ones within the canine placenta expressing the progesterone receptor (PGR). Understanding the decidualisation process thus appears essential for understanding canine reproductive physiology. METHODS: Here, we investigated the capability of canine uterine stromal cells to decidualise in vitro, thereby serving as a canine model of decidualisation. A dbcAMP-mediated approach was chosen during a time course of 24 - 72Β h. Tissue material from six (n = 6) healthy, dioestric bitches was used (approximately 2Β weeks after ovulation). Cells were characterized by differential staining, nearly 100Β % of which were vimentin-positive. Scanning and transmission electron microscope analyses were applied, and morphological changes were recorded with a live cell imaging microscope. Expression of several decidualisation markers was investigated. RESULTS: The in vitro cultured stromal cells acquired characteristics of decidual cells when incubated with 0.5Β mM dbcAMP for 72Β h. Their shape changed from elongated to rounded, while ultrastructural analysis revealed higher numbers of mitochondria and secretory follicles, and an increased proliferation rate. Elevated expression levels of IGF1, IGF2, PRLR and ERΞ± were observed in decidualised cells; PRL and ERΞ² remained mostly below the detection limit, while PGR remained unaffected. The expression of smooth muscle Ξ± actin (Ξ±SMA), another decidualisation marker, was strongly induced. Among prostaglandin system members, levels of COX2 (PTGS2) and of PGE2-synthase (PTGES) were upregulated. Expression of the PGE2 receptors, PTGER2 and PTGER4, was clearly detectable. CONCLUSION: An in vitro decidualisation model with canine uterine stromal cells was successfully established, allowing future, more detailed studies to be undertaken on the underlying molecular and endocrine mechanisms of canine decidualisation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12958-015-0066-4) contains supplementary material, which is available to authorized users
    • …
    corecore