10 research outputs found

    Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.

    Get PDF
    Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies

    Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol

    No full text
    Armin Mooranian,1 Rebecca Negrulj,1 Nigel Chen-Tan,2 Hesham S Al-Sallami,3 Zhongxiang Fang,4 TK Mukkur,5 Momir Mikov,6,7 Svetlana Golocorbin-Kon,6,7 Marc Fakhoury,8 Gerald F Watts,9 Vance Matthews,10 Frank Arfuso,5 Hani Al-Salami1 1Biotechnology and Drug Development Research Laboratory School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia; 2Faculty of Science and Engineering, Curtin University, Perth, Western Australia, Australia; 3School of Pharmacy, University of Otago, Dunedin, New Zealand; 4School of Public Health, Curtin University, Perth, Western Australia, Australia; 5Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Science, Curtin University, Perth, Western Australia, Australia; 6Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Serbia; 7Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Serbia; 8Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; 9School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia; 10Laboratory for Metabolic Dysfunction, UWA Centre for Medical Research, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia Introduction: In previous studies, we successfully designed complex multicompartmental microcapsules as a platform for the oral targeted delivery of lipophilic drugs in type 2 diabetes (T2D). Probucol (PB) is an antihyperlipidemic and antioxidant drug with the potential to show benefits in T2D. We aimed to create a novel microencapsulated formulation of PB and to examine the shape, size, and chemical, thermal, and rheological properties of these microcapsules in vitro. Method: Microencapsulation was carried out using the Büchi-based microencapsulating system developed in our laboratory. Using the polymer, sodium alginate (SA), empty (control, SA) and loaded (test, PB-SA) microcapsules were prepared at a constant ratio (1:30). Complete characterizations of microcapsules, in terms of morphology, thermal profiles, dispersity, and spectral studies, were carried out in triplicate. Results: PB-SA microcapsules displayed uniform and homogeneous characteristics with an average diameter of 1 mm. The microcapsules exhibited pseudoplastic-thixotropic characteristics and showed no chemical interactions between the ingredients. These data were further supported by differential scanning calorimetric analysis and Fourier transform infrared spectral studies, suggesting microcapsule stability. Conclusion: The new PB-SA microcapsules have good structural properties and may be suitable for the oral delivery of PB in T2D. Further studies are required to examine the clinical efficacy and safety of PB in T2D. Keywords: artificial cell microencapsulation, diabetes, antioxidant, anti-inflammatory, Probuco
    corecore