8 research outputs found

    The neutron structure of the formyl peptide receptor antagonist Cyclosporin H (CsH) unambiguously determines the solvent and Hydrogen-bonding structure for crystal form II

    No full text
    Single-crystal neutron diffraction data were collected at 20 K to a resolution of 1.05 on a crystal of the inverse formyl peptide receptor agonist cyclosporin H, CsH, (crystal form II, CsH-II) on the Laue diffractometer VIVALDI at the Institut Laue-Langevin (Grenoble). The solvent structure and hydrogen bonding network of CsH-II have been unambiguously determined by single-crystal neutron diffraction; the agreement factor R(F (2)) is 13.5% for all 2726 reflections. All hydrogen atom positions, including methyl-group orientations, have been determined by crystallographic refinement. The neutron structure of cyclosporin provides unique and complementary insights into methyl orientation, hydrogen-bonding, and solvent interactions that are not available from X-ray analysis alone

    On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds

    No full text
    Backbone N-methylation is common among peptide natural products and has a significant impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity and degree of N-methylation of the cyclic peptide was determined by backbone stereochemistry, suggesting that conformation dictates the regiochemistry of the N-methylation reaction. The permeabilities of the N-methyl variants were corroborated by computational studies on a 1024-member virtual library of N-methyl cyclic peptides. One of the most permeable compounds, a cyclic hexapeptide (MW = 755) with three N-methyl groups, showed an oral bioavailability of 28% in rat

    Brain activations associated with scientific reasoning: a literature review

    No full text
    corecore