30 research outputs found

    Generation and Characterization of Mice Carrying a Conditional Allele of the Wwox Tumor Suppressor Gene

    Get PDF
    WWOX, the gene that spans the second most common human chromosomal fragile site, FRA16D, is inactivated in multiple human cancers and behaves as a suppressor of tumor growth. Since we are interested in understanding WWOX function in both normal and cancer tissues we generated mice harboring a conditional Wwox allele by flanking Exon 1 of the Wwox gene with LoxP sites. Wwox knockout (KO) mice were developed by breeding with transgenic mice carrying the Cre-recombinase gene under the control of the adenovirus EIIA promoter. We found that Wwox KO mice suffered from severe metabolic defect(s) resulting in growth retardation and all mice died by 3 wk of age. All Wwox KO mice displayed significant hypocapnia suggesting a state of metabolic acidosis. This finding and the known high expression of Wwox in kidney tubules suggest a role for Wwox in acid/base balance. Importantly, Wwox KO mice displayed histopathological and hematological signs of impaired hematopoeisis, leukopenia, and splenic atrophy. Impaired hematopoeisis can also be a contributing factor to metabolic acidosis and death. Hypoglycemia and hypocalcemia was also observed affecting the KO mice. In addition, bone metabolic defects were evident in Wwox KO mice. Bones were smaller and thinner having reduced bone volume as a consequence of a defect in mineralization. No evidence of spontaneous neoplasia was observed in Wwox KO mice. We have generated a new mouse model to inactivate the Wwox tumor suppressor gene conditionally. This will greatly facilitate the functional analysis of Wwox in adult mice and will allow investigating neoplastic transformation in specific target tissues

    Epidemiological and clinical characteristics of childhood pandemic 2009 H1N1 virus infection: an observational cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There was a pandemic influenza around the world in 2009 including South Korea since last pandemic occurred four decades ago. We aimed to evaluate the epidemiological and clinical characteristics of this infection in childhood.</p> <p>Methods</p> <p>We evaluated the epidemiologic characteristics of all the subjects infected with the 2009 H1N1 influenza A virus (2,971 patients, ≤ 15 years of age), and the clinical and laboratory findings of the inpatients (217 patients, 80 had pneumonia) between 1 September 2009 and 31 January 2010 in a single hospital throughout the epidemic.</p> <p>Results</p> <p>The age distribution of all the subjects was relatively even. Over 90% of cases occurred during a two-month period. Two hundred and five patients (94.5%) received oseltamivir within 48 h of fever onset, and 97% of inpatients defervesced within 48 h of medication. The group with pneumonia included more males than females, and had higher leukocytes counts with lower lymphocyte differentials than the group without pneumonia. The white blood cell count and lymphocyte differential were associated with the severity of pneumonia. Corticosteroid treatment for severe pneumonia patients was highly effective in preventing disease progression.</p> <p>Conclusion</p> <p>Children of all ages affected with even rates of infection, but males were predominant in pneumonia patients. Pneumonia patients showed lymphopenia and its severity was associated with the severity of illness. Our results suggest that the mechanism of lung injury in 2009 H1N1 virus infection may be associated with the host immune response.</p

    Conditional Wwox Deletion in Mouse Mammary Gland by Means of Two Cre Recombinase Approaches

    Get PDF
    Loss of WWOX expression has been reported in many different cancers including breast cancer. Elucidating the function of this gene in adult tissues has not been possible with full Wwox knockout models. Here we characterize the first conditional models of Wwox ablation in mouse mammary epithelium utilizing two transgenic lines expressing Cre recombinase, keratin 5-Cre (BK5-Cre) and MMTV-Cre. In the BK5-Cre model we observed very efficient Wwox ablation in KO mammary glands. However, BK5-Cre Wwox KO animals die prematurely for unknown reasons. In the MMTV-Cre model we observed significant ablation of Wwox in mammary epithelium with no effect on survival. In both of these models we found that Wwox deletion resulted in impaired mammary branching morphogenesis. We demonstrate that loss of Wwox is not carcinogenic in our KO models. Furthermore, no evidence of increase proliferation or development of premalignant lesions was observed. In none of the models did loss of a single Wwox allele (i.e. haploinsufficiency) have any observable phenotypic effect in mammary gland. To better understand the function of Wwox in the mammary gland, transcriptome profiling was performed. We observed that Wwox ablation results in the deregulation of genes involved in various cellular processes. We found that expression of the non-canonical Wnt ligand, Wnt5a, was significantly upregulated in Wwox KO mammary epithelium. Interestingly, we also determined that components of the Jak/Stat3 signaling pathway were upregulated in KO mice and this correlated with a very robust increase in phospho-Stat3 signaling, which warrants further testing. Even though the loss of Wwox expression in breast and other cancers is very well documented, our findings suggest that Wwox does not act as a classical tumor suppressor as previously thought
    corecore