10 research outputs found

    Conducting polymer nanocomposite-based supercapacitors

    Get PDF
    The use of nanocomposites of electronically-conducting polymers for supercapacitors has increased significantly over the past years, due to their high capacitances and abilities to withstand many charge-discharge cycles. We have recently been investigating the use of nanocomposites of electronically-conducting polymers containing conducting and non-conducting nanomaterials such as carbon nanotubes and cellulose nanocrystals, for use in supercapacitors. In this contribution, we provide a summary of some of the key issues in this area of research. This discussion includes some history, fundamental concepts, the physical and chemical processes involved, and the challenges that these nanocomposite materials must overcome in order to become technologically viable. Due to space limitations, this is not a complete review of all the work that has been done in this field and we have focused on common themes that appear in the published work. Our aim is that this chapter will help readers to understand the advantages and challenges involved in the use of these materials in supercapacitors and to identify areas for further development

    Preparation and Application of Electrodes in Capacitive Deionization (CDI): a State-of-Art Review

    Get PDF
    As a promising desalination technology, capacitive deionization (CDI) have shown practicality and cost-effectiveness in brackish water treatment. Developing more efficient electrode materials is the key to improving salt removal performance. This work reviewed current progress on electrode fabrication in application of CDI. Fundamental principal (e.g. EDL theory and adsorption isotherms) and process factors (e.g. pore distribution, potential, salt type and concentration) of CDI performance were presented first. It was then followed by in-depth discussion and comparison on properties and fabrication technique of different electrodes, including carbon aerogel, activated carbon, carbon nanotubes, graphene and ordered mesoporous carbon. Finally, polyaniline as conductive polymer and its potential application as CDI electrode-enhancing materials were also discussed

    The influence of m-aminobenzoic acid on electrochemical synthesis and behavior of poly(aniline-co-(m-aminobenzoic acid)

    No full text
    Poly(aniline-co-(m-aminobenzoic acid)) was synthesized electrochemically at graphite electrode under galvanostatic conditions. Aqueous electrolyte for synthesis was consisted of HCl and different amount of aniline and m-aminobenzoic acid. The presence of the meta positioned carboxylic group in m-aminobenzoic acid influenced higher co-polymerization potential, different morphology and electrochemical behavior of copolymers compared to polyaniline. Electrochemical activity is achieved by proton exchange in neutral environment that can result in a faster charge/discharge process, which is in the case of PANI limited by slow anion exchange, making this material promising for consideration in super-capacitors and in biological system

    Eco-friendly water-borne conducting polyaniline

    No full text

    Environmental application of nanotechnology: air, soil, and water

    No full text
    corecore