12 research outputs found

    Fertile Prototaxites taiti: a basal ascomycete with inoperculate, polysporous asci lacking croziers

    Get PDF
    The affinities of Prototaxites have been debated ever since its fossils, some attaining tree-trunk proportions, were discovered in Canadian Lower Devonian rocks in 1859. Putative assignations include conifers, red and brown algae, liverworts and fungi (some lichenised). Detailed anatomical investigation led to the reconstruction of the type species, P. logani, as a giant sporophore (basidioma) of an agaricomycete (= holobasidiomycete), but evidence for its reproduction remained elusive. Tissues associated with P. taiti in the Rhynie chert plus charcoalified fragments from southern Britain are investigated here to describe the reproductive characters and hence affinities of Prototaxites. Thin sections and peels (Pragian Rhynie chert, Aberdeenshire) were examined using light and confocal microscopy; Pƙídolí and Lochkovian charcoalified samples (Welsh Borderland) were liberated from the rock and examined with scanning electron microscopy. Prototaxites taiti possessed a superficial hymenium comprising an epihymenial layer, delicate septate paraphyses, inoperculate polysporic asci lacking croziers and a subhymenial layer composed predominantly of thin-walled hyphae and occasional larger hyphae. Prototaxites taiti combines features of extant Taphrinomycotina (Neolectomycetes lacking croziers) and Pezizomycotina (epihymenial layer secreted by paraphyses) but is not an ancestor of the latter. Brief consideration is given to its nutrition and potential position in the phylogeny of the Ascomycota

    Paleontology of leaf beetles

    Full text link
    `The rate of evolution in any large group is not uniform; there are periods of relatise stability, and periods of comparatively rapid change.' Cockerell and LeVeque, 1931 To Yenli Ych, my beloved wife, a most wonderful person! The fossil record of the Chrysomelidae can be tentatively traced back to the late Paleozoic to early Mesozoic Triassic. Mesozoic records at least 9 subfamilies, 19 genera, and 35 species, are represented by the Sagrinae, the exclusively Mesozoic Proto scelinae, Clytrinae, Cryptocephalinae, Eumolpinae, Chrysomelinae. Galerucinac, Alticinae, and Cassidinae. Cenozoic records at least 12 subfamilies- 63 % of the extant- 12! genera, and 325 species, include the same extant subfamilies as well as the Donaciinae, Zeugophorinae, Criocerinae, and Hispinae and can be frequently identified to genus, especially if preserved in amber. Quaternary records are often identified to extant species. tn total, at least t3! genera about 4 % of total extant, and 357 species < 1 % have been reported. At least, 24 genera <1 % of the extant seem to be extinct. Although reliable biological information associated with the fossil chrysomelids is very scarce, it seems that most of the modern host-plant associations were established, at least, in the late Mesozoic to early Cenozoic. As a whole, stasis seems to be the general rule of the chrysomelid fossil record. Together with other faunal elements, chrysomelids, especially donaciines, have been used as biogeographic and paleoclimatological indicators in the Holocene. I

    Abiotic factors affecting the development of Ulva sp. (Ulvophyceae; Chlorophyta) in freshwater ecosystems

    Get PDF
    The influence of physicochemical factors on the development of Ulva species with distromatic tubular morphology was studied in three streams located in Poznan, Poland. The study evaluated key environmental factors that may influence the colonisation and growth of Ulva populations in freshwater systems. In total, nine environmental parameters were included: temperature, water depth, pH, oxygen (O2), ammonium (NH4),nitrate (NO3-), phosphate(PO43-), sodium chloride (NaCl) and total iron (Fe). Morphometric features of thalli (length and width, percentage of furcated and young thalli) and surface area of free-floating mats formed by the freshwater populations of Ulva were compared at all sites. Principal components analysis indicated the most important factors influencing Ulva development were sodium chloride concentrations and water depth. Two other key chemical factors affecting the freshwater form of Ulva were phosphate and nitrite concentrations. High concentrations of sodium chloride inhibited the development of Ulva, leading to a lower number of thalli in the Ulva mats. At the siteswith stable and deeper water, the surface area of the mats was larger. Both phosphate and nitrite concentrations were positively correlated with an increase in the number of thalli in the mats and the thalli length

    The roots of pollen analysis: the road to Lennart von Post

    No full text

    Palaeozoic Innovations in the Micro- and Megafossil Plant Record: from the Earliest Plant spores to the Earliest Seeds

    Full text link
    peer reviewe
    corecore