1,717 research outputs found

    SILAC-based phosphoproteomics reveals an inhibitory role of KSR1 in p53 transcriptional activity via modulation of DBC1

    Get PDF
    BACKGROUND We have previously identified kinase suppressor of ras-1 (KSR1) as a potential regulatory gene in breast cancer. KSR1, originally described as a novel protein kinase, has a role in activation of mitogen-activated protein kinases. Emerging evidence has shown that KSR1 may have dual functions as an active kinase as well as a scaffold facilitating multiprotein complex assembly. Although efforts have been made to study the role of KSR1 in certain tumour types, its involvement in breast cancer remains unknown. METHODS A quantitative mass spectrometry analysis using stable isotope labelling of amino acids in cell culture (SILAC) was implemented to identify KSR1-regulated phosphoproteins in breast cancer. In vitro luciferase assays, co-immunoprecipitation as well as western blotting experiments were performed to further study the function of KSR1 in breast cancer. RESULTS Of significance, proteomic analysis reveals that KSR1 overexpression decreases deleted in breast cancer-1 (DBC1) phosphorylation. Furthermore, we show that KSR1 decreases the transcriptional activity of p53 by reducing the phosphorylation of DBC1, which leads to a reduced interaction of DBC1 with sirtuin-1 (SIRT1); this in turn enables SIRT1 to deacetylate p53. CONCLUSION Our findings integrate KSR1 into a network involving DBC1 and SIRT1, which results in the regulation of p53 acetylation and its transcriptional activity

    Proteomic profile of KSR1-regulated signalling in response to genotoxic agents in breast cancer

    Get PDF
    Kinase suppressor of Ras 1 (KSR1) has been implicated in tumorigenesis in multiple cancers, including skin, pancreatic and lung carcinomas. However, our recent study revealed a role of KSR1 as a tumour suppressor in breast cancer, the expression of which is potentially correlated with chemotherapy response. Here, we aimed to further elucidate the KSR1-regulated signalling in response to genotoxic agents in breast cancer. Stable isotope labelling by amino acids in cell culture (SILAC) coupled to high-resolution mass spectrometry (MS) was implemented to globally characterise cellular protein levels induced by KSR1 in the presence of doxorubicin or etoposide. The acquired proteomic signature was compared and GO-STRING analysis was subsequently performed to illustrate the activated functional signalling networks. Furthermore, the clinical associations of KSR1 with identified targets and their relevance in chemotherapy response were examined in breast cancer patients. We reveal a comprehensive repertoire of thousands of proteins identified in each dataset and compare the unique proteomic profiles as well as functional connections modulated by KSR1 after doxorubicin (Doxo-KSR1) or etoposide (Etop-KSR1) stimulus. From the up-regulated top hits, several proteins, including STAT1, ISG15 and TAP1 are also found to be positively associated with KSR1 expression in patient samples. Moreover, high KSR1 expression, as well as high abundance of these proteins, is correlated with better survival in breast cancer patients who underwent chemotherapy. In aggregate, our data exemplify a broad functional network conferred by KSR1 with genotoxic agents and highlight its implication in predicting chemotherapy response in breast cancer

    Influenza sequence and epitope database

    Get PDF
    Influenza epidemics arise through the acquisition of viral genetic changes to overcome immunity from previous infections. An increasing number of complete genomes of influenza viruses have been sequenced in Asia in recent years. Knowledge about the genomes of the seasonal influenza viruses from different countries in Asia is valuable for monitoring and understanding of the emergence, migration and evolution of strains. In order to make full use of the wealth of information from such data, we have developed an integrated user friendly relational database, Influenza Sequence and Epitope Database (ISED), that catalogs the influenza sequence and epitope information obtained in Asia. ISED currently hosts a total of 13 020 influenza A and 2984 influenza B virus sequence data collected in 17 countries including 9 Asian countries, and a total of approximately 545 amantadine-resistant influenza virus sequences collected in Korea. ISED provides users with prebuilt application tools to analyze sequence alignment and different patterns and allows users to visualize epitope-matching structures, which is freely accessible at http://influenza.korea.ac.kr and http://influenza.cdc.go.kr

    Short-Term Analysis of Human Dental Pulps After Direct Capping with Portland Cement

    Get PDF
    This study evaluated the short-term response of human pulp tissue when directly capped with Portland cement. In this series of cases, twenty human third molars that were scheduled for extraction were used. After cavity preparation, pulp exposure was achieved and Portland cement pulp capping was performed. Teeth were extracted after 1, 7, 14 and 21 days following treatment and prepared for histological examination and bacterial detection. Each group had 5 teeth. The results were descriptively analysed. Dentin bridge formation was seen in two teeth with some distance from the material interface (14 and 21 days). Soft inflammatory responses were observed in most of the cases. Bacteria were not disclosed in any specimen. PC exhibited some features of biocompatibility and capability of inducing mineral pulp response in short-term evaluation. The results suggested that PC has a potential to be used as a less expensive pulp capping material in comparison to other pulp capping materials

    The pharmaceutical use of permethrin: Sources and behavior during municipal sewage treatment

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Springer Science+Business Media, LLC.Permethrin entered use in the 1970s as an insecticide in a wide range of applications, including agriculture, horticultural, and forestry, and has since been restricted. In the 21st century, the presence of permethrin in the aquatic environment has been attributed to its use as a human and veterinary pharmaceutical, in particular as a pedeculicide, in addition to other uses, such as a moth-proofing agent. However, as a consequence of its toxicity to fish, sources of permethrin and its fate and behavior during wastewater treatment are topics of concern. This study has established that high overall removal of permethrin (approximately 90%) was achieved during wastewater treatment and that this was strongly dependent on the extent of biological degradation in secondary treatment, with more limited subsequent removal in tertiary treatment processes. Sources of permethrin in the catchment matched well with measured values in crude sewage and indicated that domestic use accounted for more than half of the load to the treatment works. However, removal may not be consistent enough to achieve the environmental quality standards now being derived in many countries even where tertiary treatment processes are applied.United Utilities PL

    Pharmacokinetics, safety, and tolerability of a depot formulation of naltrexone in alcoholics: an open-label trial

    Get PDF
    BACKGROUND: Naltrexone is an effective medication for treatment of alcohol dependence, but its efficacy is limited by lack of adherence to the oral dosage form. A long-acting depot formulation of naltrexone may increase adherence. METHODS: A single site, 6-week open label study was conducted with 16 alcohol dependent subjects each receiving 300 mg of Naltrexone Depot by intramuscular injection. The main outcomes were safety and tolerability of the Naltrexone Depot formulation, blood levels of naltrexone and its main metabolite 6-beta naltrexol, and self-reported alcohol use. All subjects received weekly individual counseling sessions. RESULTS: The medication was well tolerated with 88% of subjects completing the 6-week trial. The most common side effect experienced was injection site complications. There were no serious adverse events. Subjects had naltrexone and 6-beta-naltrexol concentrations throughout the trial with mean values ranging from 0.58 ng/mL to 2.04 ng/mL and 1.51 ng/mL to 5.52 ng/mL, respectively, at each sampling time following administration. Compared to baseline, subjects had significantly reduced number of drinks per day, heavy drinking days and proportion of drinking days. CONCLUSION: Naltrexone Depot is safe and well tolerated in alcoholics and these findings support the further investigation of its utility in larger double-blind placebo controlled trials

    SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale

    Get PDF
    Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role

    Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin

    Get PDF
    Pathological processes involved in the initiation of rheumatoid synovitis remain unclear. We undertook the present study to identify immune and stromal processes that are present soon after the clinical onset of rheumatoid arthritis ( RA) by assessing a panel of T cell, macrophage, and stromal cell related cytokines and chemokines in the synovial fluid of patients with early synovitis. Synovial fluid was aspirated from inflamed joints of patients with inflammatory arthritis of duration 3 months or less, whose outcomes were subsequently determined by follow up. For comparison, synovial fluid was aspirated from patients with acute crystal arthritis, established RA and osteoarthritis. Rheumatoid factor activity was blocked in the synovial fluid samples, and a panel of 23 cytokines and chemokines measured using a multiplex based system. Patients with early inflammatory arthritis who subsequently developed RA had a distinct but transient synovial fluid cytokine profile. The levels of a range of T cell, macrophage and stromal cell related cytokines ( e. g. IL-2, IL-4, IL-13, IL-17, IL-15, basic fibroblast growth factor and epidermal growth factor) were significantly elevated in these patients within 3 months after symptom onset, as compared with early arthritis patients who did not develop RA. In addition, this profile was no longer present in established RA. In contrast, patients with non-rheumatoid persistent synovitis exhibited elevated levels of interferon-gamma at initiation. Early synovitis destined to develop into RA is thus characterized by a distinct and transient synovial fluid cytokine profile. The cytokines present in the early rheumatoid lesion suggest that this response is likely to influence the microenvironment required for persistent RA

    Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans

    Get PDF
    Whole genome expression microarrays can be used to study gene expression in blood, which comes in part from leukocytes, immature platelets, and red blood cells. Since these cells are important in the pathogenesis of stroke, RNA provides an index of these cellular responses to stroke. Our studies in rats have shown specific gene expression changes 24 hours after ischemic stroke, hemorrhage, status epilepticus, hypoxia, hypoglycemia, global ischemia, and following brief focal ischemia that simulated transient ischemic attacks in humans. Human studies show gene expression changes following ischemic stroke. These gene profiles predict a second cohort with >90% sensitivity and specificity. Gene profiles for ischemic stroke caused by large-vessel atherosclerosis and cardioembolism have been described that predict a second cohort with >85% sensitivity and specificity. Atherosclerotic genes were associated with clotting, platelets, and monocytes, and cardioembolic genes were associated with inflammation, infection, and neutrophils. These gene profiles predicted the cause of stroke in 58% of cryptogenic patients. These studies will provide diagnostic, prognostic, and therapeutic markers, and will advance our understanding of stroke in humans. New techniques to measure all coding and noncoding RNAs along with alternatively spliced transcripts will markedly advance molecular studies of human stroke

    The interplay of intrinsic and extrinsic bounded noises in genetic networks

    Get PDF
    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a genetic network. The influence of intrinsic and extrinsic noises on genetic networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i)(i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii)(ii) a model of enzymatic futile cycle and (iii)(iii) a genetic toggle switch. In (ii)(ii) and (iii)(iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possibile functional role of bounded noises
    corecore