51 research outputs found

    High-Frequency, Low-Magnitude Vibration Does Not Prevent Bone Loss Resulting from Muscle Disuse in Mice following Botulinum Toxin Injection

    Get PDF
    High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB) would maintain bone in a muscle disuse model with botulinum toxin type A (BTX). Female 16–18 wk old BALB/c mice (N = 36) were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 µL; 1 U/100 g body mass) into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, ±0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA) and tibial bone properties (epiphysis, metaphysis and diaphysis) were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12±9% and 7±6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX

    A new approach to comprehensively evaluate the morphological properties of the human femoral head : example of application to osteoarthritic joint

    Get PDF
    Osteoarthritis affects the morphological properties of the femoral head. The goal of this study was to develop a method to elucidate whether these changes are localised to discrete regions, or if the reported trends in microstructural changes may be identified throughout the subchondral bone of the human femoral head. Whole femoral heads extracted from osteoarthritic (n = 5) and healthy controls (n = 5) underwent microCT imaging 39 μm voxel size. The subchondral bone plate was virtually isolated to evaluate the plate thickness and plate porosity. The trabecular bone region was divided into 37 volumes of interest spatially distributed in the femoral head, and bone morphometric properties were determined in each region. The study showed how the developed approach can be used to study the heterogeneous properties of the human femoral head affected by a disease such as osteoarthritis. As example, in the superior femoral head osteoarthritic specimens exhibited a more heterogeneous micro-architecture, with trends towards thicker cortical bone plate, higher trabecular connectivity density, higher trabecular bone density and thicker structures, something that could only be observed with the newly developed approach. Bone cysts were mostly confined to the postero-lateral quadrants extending from the subchondral region into the mid trabecular region. Nevertheless, in order to generalise these findings, a larger sample size should be analysed in the future. This novel method allowed a comprehensive evaluation of the heterogeneous micro-architectural properties of the human femoral head, highlighting effects of OA in the superior subchondral cortical and trabecular bone. Further investigations on different stages of OA would be needed to identify early changes in the bone

    In Vivo Evaluation of the Presence of Bone Marrow in Cortical Porosity in Postmenopausal Osteopenic Women

    Get PDF
    This is the first observational study examining cortical porosity in vivo in postmenopausal osteopenic women and to incorporate data from two different imaging modalities to further examine the nature of cortical porosity. The goal of this study was to combine high-resolution peripheral computed tomography (HR-pQCT) images, which contain high spatial resolution information of the cortical structure, and magnetic resonance (MR) images, which allow the visualization of soft tissues such as bone marrow, to observe the amount of cortical porosity that contains bone marrow in postmenopausal osteopenic women. The radius of 49 and the tibia of 51 postmenopausal osteopenic women (age 56 ± 3.7) were scanned using both HR-pQCT and MR imaging. A normalized mutual information registration algorithm was used to obtain a three-dimensional rigid transform which aligned the MR image to the HR-pQCT image. The aligned images allowed for the visualization of bone marrow in cortical pores. From the HR-pQCT image, the percent cortical porosity, the number of cortical pores, and the size of each cortical pore was determined. By overlaying the aligned MR and HR-pQCT images, the percent of cortical pores containing marrow, the number of cortical pores containing marrow, and the size of each cortical pore containing marrow were measured. While the amount of cortical porosity did not vary greatly between subjects, the type of cortical pore, containing marrow vs. not containing marrow, varied highly between subjects. The results suggest that cortical pore spaces contain components of varying composition, and that there may be more than one mechanism for the development of cortical porosity

    Idiopathic toe walking and sensory processing dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is generally understood that toe walking involves the absence or limitation of heel strike in the contact phase of the gait cycle. Toe walking has been identified as a symptom of disease processes, trauma and/or neurogenic influences. When there is no obvious cause of the gait pattern, a diagnosis of idiopathic toe walking (ITW) is made. Although there has been limited research into the pathophysiology of ITW, there has been an increasing number of contemporary texts and practitioner debates proposing that this gait pattern is linked to a sensory processing dysfunction (SPD). The purpose of this paper is to examine the literature and provide a summary of what is known about the relationship between toe walking and SPD.</p> <p>Method</p> <p>Forty-nine articles were reviewed, predominantly sourced from peer reviewed journals. Five contemporary texts were also reviewed. The literature styles consisted of author opinion pieces, letters to the editor, clinical trials, case studies, classification studies, poster/conference abstracts and narrative literature reviews. Literature was assessed and graded according to level of evidence.</p> <p>Results</p> <p>Only one small prospective, descriptive study without control has been conducted in relation to idiopathic toe walking and sensory processing. A cross-sectional study into the prevalence of idiopathic toe walking proposed sensory processing as being a reason for the difference. A proposed link between ITW and sensory processing was found within four contemporary texts and one conference abstract.</p> <p>Conclusion</p> <p>Based on the limited conclusive evidence available, the relationship between ITW and sensory processing has not been confirmed. Given the limited number and types of studies together with the growing body of anecdotal evidence it is proposed that further investigation of this relationship would be advantageous.</p

    Effect of repeated in vivo microCT imaging on the properties of the mouse tibia

    Get PDF
    In longitudinal studies, in vivo micro-Computed Tomography (microCT) imaging is used to investigate bone changes over time due to interventions in mice. However, ionising radiation can provoke significant variations in bone morphometric parameters. In a previous study, we evaluated the effect of reducing the integration time on the properties of the mouse tibia measured from microCT images. A scanning procedure (100 ms integration time, 256 mGy nominal radiation dose) was selected as the best compromise between image quality and radiation dose induced on the animal. In this work, the effect of repeated in vivo scans has been evaluated using the selected procedure. The right tibia of twelve female C57BL/6 (six wild type, WT, six ovariectomised, OVX) and twelve BALB/c (six WT, six OVX) mice was scanned every two weeks, starting at week 14 of age. At week 24, mice were sacrificed and both tibiae were scanned. Standard trabecular and cortical morphometric parameters were calculated. The spatial distribution of densitometric parameters (e.g. bone mineral content) was obtained by dividing each tibia in 40 partitions. Stiffness and strength in compression were estimated using homogeneous linear elastic microCT-based micro-Finite Element models. Differences between right (irradiated) and left (non-irradiated control) tibiae were evaluated for each parameter. The irradiated tibiae had higher Tb.Th (+3.3%) and Tb.Sp (+11.6%), and lower Tb.N (-14.2%) compared to non-irradiated tibiae, consistently across both strains and intervention groups. A reduction in Tb.BV/TV (-14.9%) was also observed in the C57BL/6 strain. In the OVX group, a small reduction was also observed in Tt.Ar (-5.0%). In conclusion, repeated microCT scans (at 256 mGy, 5 scans, every two weeks) had limited effects on the mouse tibia, compared to the expected changes induced by bone treatments. Therefore, the selected scanning protocol is acceptable for measuring the effect of bone interventions in vivo

    Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues

    Get PDF
    Marrow adipose tissue (MAT) accumulates in diverse clinical conditions but remains poorly understood. Here we show region-specific variation in MAT adipocyte development, regulation, size, lipid composition, gene expression, and genetic determinants. Early MAT formation in mice is conserved, while later development is strain dependent. Proximal, but not distal, MAT is lost with 21-day cold exposure. Rat MAT adipocytes from distal sites have an increased proportion of monounsaturated fatty acids and expression of Scd1/Scd2, Cebpa and Cebpb. Humans also have increased distal marrow fat unsaturation. We define proximal ‘regulated’ MAT (rMAT) as single adipocytes interspersed with active hematopoiesis, whereas distal ‘constitutive’ MAT (cMAT) has low hematopoiesis, contains larger adipocytes, develops earlier, and remains preserved upon systemic challenges. Loss of rMAT occurs in mice with congenital generalized lipodystrophy type 4, whereas both rMAT and cMAT are preserved in mice with congenital generalized lipodystrophy type 3. Consideration of these MAT subpopulations may be important for future studies linking MAT to bone biology, hematopoiesis and whole-body metabolism

    FES-rowing attenuates bone loss following spinal cord injury as assessed by HR-pQCT

    No full text
    Neurologically motor complete spinal cord injury (SCI) presents a unique model of bone loss whereby specific regional sites are exposed to a complete loss of voluntary muscle-induced skeletal loading against gravity. This results in a high rate of bone loss, especially in the lower limbs where trabecular bone mass decreases by ~50–60% and cortical bone mass decreases by 25–34% before the rate of bone loss slows. These SCI-induced losses that are likely superimposed on continual age-related bone losses, increase the risk of low-impact fragility fracture. The fracture incidence 20 years post SCI is reported to be 4.6% per year. An intervention that effectively prevents, attenuates, or reverses bone loss is therefore highly desirable. We present a case study of an individual with chronic complete SCI, where bone loss has been attenuated following long-term functional electrical stimulation (FES)-rowing training. In this case study, we characterize the ultradistal tibia and ultradistal radius of the FES-rower with chronic complete SCI using high-resolution-peripheral quantitative computed tomography. These data are compared with a group of FES-untrained individuals with chronic complete SCI and to a normative non-SCI cohort. The evidence suggests, albeit from a single individual, that long-term FES-rowing training can attenuate bone loss secondary to chronic complete SCI. Indeed, key FES-rower’s bone metrics for the ultradistal tibia more closely resemble normative age-matched values, which may have clinical significance since the majority of fragility fractures in chronic SCI occur in the lower extremities
    corecore