7 research outputs found

    A machine learning approach to predict perceptual decisions: an insight into face pareidolia

    Get PDF
    The perception of an external stimulus not only depends upon the characteristics of the stimulus but is also influenced by the ongoing brain activity prior to its presentation. In this work, we directly tested whether spontaneous electrical brain activities in prestimulus period could predict perceptual outcome in face pareidolia (visualizing face in noise images) on a trial-by-trial basis. Participants were presented with only noise images but with the prior information that some faces would be hidden in these images, while their electrical brain activities were recorded; participants reported their perceptual decision, face or no-face, on each trial. Using differential hemispheric asymmetry features based on large-scale neural oscillations in a machine learning classifier, we demonstrated that prestimulus brain activities could achieve a classification accuracy, discriminating face from no-face perception, of 75% across trials. The time–frequency features representing hemispheric asymmetry yielded the best classification performance, and prestimulus alpha oscillations were found to be mostly involved in predicting perceptual decision. These findings suggest a mechanism of how prior expectations in the prestimulus period may affect post-stimulus decision making

    Epileptic seizures detection in EEGs blending frequency domain with information gain technique

    No full text
    This paper proposes a new algorithm which combines the information in frequency domain with the Information Gain (InfoGain) technique for the detection of epileptic seizures from electroencephalogram (EEG) data. The proposed method consists of four main steps. Firstly, in order to investigate which method is most suitable to decompose the EEG signals into frequency bands, we implement separately a fast Fourier transform (FFT) or discrete wavelet transform (DWT). Secondly, each band is partitioned into k windows and a set of statistical features are extracted from each window. Thirdly, the InfoGain is used to rank the extracted features and the most important ones are selected. Lastly, these features are forwarded to a least square support vector machine (LS-SVM) classifier to classify the EEG. This scheme is implemented and tested on a benchmark EEG database and also compared with other existing methods, based on some performance evaluation measures. The experimental results show that the proposed FFT combined with InfoGain method can generate better performance than the DWT method. This method achieves 100% accuracy for five different pairs: healthy people with eyes open (z) versus epileptic patients with activity seizures (s); healthy people with eyes closed (o) versus s; epileptic patients with free seizures (n) versus s; patients with free seizures epileptic (f) versus s; and z versus o. The accuracies obtained for two other pairs, (o vs. n) and (z vs. f), are 95.62 and 88.32%, respectively. These two pairs have more similarities with each other, leading to a lower level of accuracy. The proposed approach outperforms six other reported methods and achieves an 11.9% improvement. Finally, it can be concluded that the proposed FFT combined with InfoGain method has the capacity to detect epileptic seizures in EEG most effectively
    corecore