203 research outputs found

    Comparing sensitivity and specificity methods of chemical and baronet affinity measuring glycated hemoglobin with HPLC method

    Get PDF
    Abstract Introduction: Glycated hemoglobin level is a good estimate of the average blood glucose over

    Proton-proton bremsstrahlung towards the elastic limit at 190 MeV incident beam energy

    Get PDF
    AbstractA series of nucleon–nucleon bremsstrahlung (NNγ) experiments at 190 MeV incident beam energy have been performed at KVI in order to gain more insight into the dynamics governing the bremsstrahlung reaction. After initial measurements wherein the bremsstrahlung process was studied far away from the elastic limit, a new study was used to probe the process nearer to the elastic limit by measuring at lower photon energies. Measured cross sections and analyzing powers are compared with the predictions of a microscopic model and those of two soft-photon models. The theoretical calculations overestimate the data by up to ≈30%, for some kinematics

    Lifted graphical models: a survey

    Get PDF
    Lifted graphical models provide a language for expressing dependencies between different types of entities, their attributes, and their diverse relations, as well as techniques for probabilistic reasoning in such multi-relational domains. In this survey, we review a general form for a lifted graphical model, a par-factor graph, and show how a number of existing statistical relational representations map to this formalism. We discuss inference algorithms, including lifted inference algorithms, that efficiently compute the answers to probabilistic queries over such models. We also review work in learning lifted graphical models from data. There is a growing need for statistical relational models (whether they go by that name or another), as we are inundated with data which is a mix of structured and unstructured, with entities and relations extracted in a noisy manner from text, and with the need to reason effectively with this data. We hope that this synthesis of ideas from many different research groups will provide an accessible starting point for new researchers in this expanding field

    Glycine Inhibitory Dysfunction Turns Touch into Pain through PKCgamma Interneurons

    Get PDF
    Dynamic mechanical allodynia is a widespread and intractable symptom of neuropathic pain for which there is a lack of effective therapy. During tactile allodynia, activation of the sensory fibers which normally detect touch elicits pain. Here we provide a new behavioral investigation into the dynamic component of tactile allodynia that developed in rats after segmental removal of glycine inhibition. Using in vivo electrophysiological recordings, we show that in this condition innocuous mechanical stimuli could activate superficial dorsal horn nociceptive specific neurons. These neurons do not normally respond to touch. We anatomically show that the activation was mediated through a local circuit involving neurons expressing the gamma isoform of protein kinase C (PKCγ). Selective inhibition of PKCγ as well as selective blockade of glutamate NMDA receptors in the superficial dorsal horn prevented both activation of the circuit and allodynia. Thus, our data demonstrates that a normally inactive circuit in the dorsal horn can be recruited to convert touch into pain. It also provides evidence that glycine inhibitory dysfunction gates tactile input to nociceptive specific neurons through PKCγ-dependent activation of a local, excitatory, NMDA receptor-dependent, circuit. As a consequence of these findings, we suggest that pharmacological inhibition of PKCγ might provide a new tool for alleviating allodynia in the clinical setting

    Genetic Architecture of Aluminum Tolerance in Rice (Oryza sativa) Determined through Genome-Wide Association Analysis and QTL Mapping

    Get PDF
    Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils, and rice has been demonstrated to be significantly more Al tolerant than other cereal crops. However, the mechanisms of rice Al tolerance are largely unknown, and no genes underlying natural variation have been reported. We screened 383 diverse rice accessions, conducted a genome-wide association (GWA) study, and conducted QTL mapping in two bi-parental populations using three estimates of Al tolerance based on root growth. Subpopulation structure explained 57% of the phenotypic variation, and the mean Al tolerance in Japonica was twice that of Indica. Forty-eight regions associated with Al tolerance were identified by GWA analysis, most of which were subpopulation-specific. Four of these regions co-localized with a priori candidate genes, and two highly significant regions co-localized with previously identified QTLs. Three regions corresponding to induced Al-sensitive rice mutants (ART1, STAR2, Nrat1) were identified through bi-parental QTL mapping or GWA to be involved in natural variation for Al tolerance. Haplotype analysis around the Nrat1 gene identified susceptible and tolerant haplotypes explaining 40% of the Al tolerance variation within the aus subpopulation, and sequence analysis of Nrat1 identified a trio of non-synonymous mutations predictive of Al sensitivity in our diversity panel. GWA analysis discovered more phenotype–genotype associations and provided higher resolution, but QTL mapping identified critical rare and/or subpopulation-specific alleles not detected by GWA analysis. Mapping using Indica/Japonica populations identified QTLs associated with transgressive variation where alleles from a susceptible aus or indica parent enhanced Al tolerance in a tolerant Japonica background. This work supports the hypothesis that selectively introgressing alleles across subpopulations is an efficient approach for trait enhancement in plant breeding programs and demonstrates the fundamental importance of subpopulation in interpreting and manipulating the genetics of complex traits in rice

    Secondary crystalline phases identification in Cu2ZnSnSe4 thin films: contributions from Raman scattering and photoluminescence

    Get PDF
    In this work, we present the Raman peak positions of the quaternary pure selenide compound Cu2ZnSnSe4 (CZTSe) and related secondary phases that were grown and studied under the same conditions. A vast discussion about the position of the X-ray diffraction (XRD) reflections of these compounds is presented. It is known that by using XRD only, CZTSe can be identified but nothing can be said about the presence of some secondary phases. Thin films of CZTSe, Cu2SnSe3, ZnSe, SnSe, SnSe2, MoSe2 and a-Se were grown, which allowed their investigation by Raman spectroscopy (RS). Here we present all the Raman spectra of these phases and discuss the similarities with the spectra of CZTSe. The effective analysis depth for the common back-scattering geometry commonly used in RS measurements, as well as the laser penetration depth for photoluminescence (PL) were estimated for different wavelength values. The observed asymmetric PL band on a CZTSe film is compatible with the presence of CZTSe single-phase and is discussed in the scope of the fluctuating potentials’ model. The estimated bandgap energy is close to the values obtained from absorption measurements. In general, the phase identification of CZTSe benefits from the contributions of RS and PL along with the XRD discussion.info:eu-repo/semantics/publishedVersio

    Targeting the hypoxic fraction of tumours using hypoxia activated prodrugs

    Get PDF
    The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high priority target and one therapeutic strategies designed to eradicate hypoxic cells in tumours are a group of compounds known collectively as hypoxia activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (i) the ability of oxygen to either reverse or inhibit the activation process and (ii) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples

    Eclectic approach to anxiety disorders among rural children Abordagem ecletica a transtornos de ansiedade em criancas de zona rural

    Get PDF
    Introduction: Anxiety disorders in primary school-aged children negatively affect their mental health and psychological development. Available non-medical treatments for these conditions are time-consuming and expensive. In this context, eclectic therapy is a therapeutic approach that incorporates some therapeutic techniques and philosophies to create the ideal treatment. In this study, eclectic therapy consisted of art therapy and cognitive-behavioral therapy designed for children suffering from high level of anxiety in their middle childhood years. The therapy also included group guidance sessions for their mothers. The effectiveness of this intervention was examined in the study. Methods: 61 students aged 9-12 years with high levels of anxiety participated in the study. Intervention A (n = 20) consisted of 9-hour eclectic therapy for children with 3-hour group guidance sessions for their mothers. Intervention B (n = 20) consisted of 9-hour eclectic therapy for children. There was also a control group (n = 21). Results: Teacher ratings of children’s mental health difficulties and self-report ratings of anxiety disorders indicated a significant difference from pretest to posttest, revealing a large effect size between the two interventions. Higher levels of pretest scores significantly predicted higher posttest scores for all domains of anxiety and mental health difficulties. Furthermore, age, gender, mothers working a 15-hour day, mother’s educational level, parental divorce rates, parental death, and family monthly income predicted therapy outcomes. Conclusion: Results provide support for the effectiveness of eclectic art and CBT to improve children’s mental health and reduce anxiety through changing thoughts, beliefs, emotions, and behaviors that may cause fear and anxiety
    corecore