21 research outputs found

    The diagnosis of dengue in patients presenting with acute febrile illness using supervised machine learning and impact of seasonality

    Get PDF
    Background: Symptomatic dengue infection can result in a life-threatening shock syndrome and timely diagnosis is essential. Point-of-care tests for non-structural protein 1 and IgM are used widely but performance can be limited. We developed a supervised machine learning model to predict whether patients with acute febrile illnesses had a diagnosis of dengue or other febrile illnesses (OFI). The impact of seasonality on model performance over time was examined. Methods: We analysed data from a prospective observational clinical study in Vietnam. Enrolled patients presented with an acute febrile illness of 90%). Conclusion: Supervised machine learning models are able to discriminate between dengue and OFI diagnoses in patients presenting with an early undifferentiated febrile illness. These models could be of clinical utility in supporting healthcare decision-making and provide passive surveillance across dengue endemic regions. Effects of seasonality and changing disease prevalence must however be taken into account—this is of significant importance given unpredictable effects of human-induced climate change and the impact on health

    The diagnosis of dengue in patients presenting with acute febrile illness using supervised machine learning and impact of seasonality

    No full text
    Background: Symptomatic dengue infection can result in a life-threatening shock syndrome and timely diagnosis is essential. Point-of-care tests for non-structural protein 1 and IgM are used widely but performance can be limited. We developed a supervised machine learning model to predict whether patients with acute febrile illnesses had a diagnosis of dengue or other febrile illnesses (OFI). The impact of seasonality on model performance over time was examined. Methods: We analysed data from a prospective observational clinical study in Vietnam. Enrolled patients presented with an acute febrile illness of <72 h duration. A gradient boosting model (XGBoost) was used to predict final diagnosis using age, sex, haematocrit, platelet, white cell, and lymphocyte count collected on enrolment. Data was randomly split 80/20% into a training and hold-out set, respectively, with the latter not used in model development. Cross-validation and hold out set testing was used, with performance over time evaluated through a rolling window approach. Results: We included 8,100 patients recruited between 16th October 2010 and 10th December 2014. In total 2,240 (27.7%) patients were diagnosed with dengue infection. The optimised model from training data had an overall median area under the receiver operator curve (AUROC) of 0.86 (interquartile range 0.84–0.86), specificity of 0.92, sensitivity of 0.56, positive predictive value of 0.73, negative predictive value (NPV) of 0.84, and Brier score of 0.13 in predicting the final diagnosis, with similar performances in hold-out set testing (AUROC of 0.86). Model performances varied significantly over time as a function of seasonality and other factors. Incorporation of a dynamic threshold which continuously learns from recent cases resulted in a more consistent performance throughout the year (NPV >90%). Conclusion: Supervised machine learning models are able to discriminate between dengue and OFI diagnoses in patients presenting with an early undifferentiated febrile illness. These models could be of clinical utility in supporting healthcare decision-making and provide passive surveillance across dengue endemic regions. Effects of seasonality and changing disease prevalence must however be taken into account—this is of significant importance given unpredictable effects of human-induced climate change and the impact on health

    Metformin as adjunctive therapy for dengue in overweight and obese patients: a protocol for an open-label clinical trial (MeDO)

    No full text
    Background: Dengue is a disease of major global importance. While most symptomatic infections are mild, a small proportion of patients progress to severe disease with risk of hypovolaemic shock, organ dysfunction and death. In the absence of effective antiviral or disease modifying drugs, clinical management is solely reliant on supportive measures. Obesity is a growing problem among young people in Vietnam and is increasingly recognised as an important risk factor for severe dengue, likely due to alterations in host immune and inflammatory pathways. Metformin, a widely used anti-hyperglycaemic agent with excellent safety profile, has demonstrated potential as a dengue therapeutic in vitro and in a retrospective observational study of adult dengue patients with type 2 diabetes. This study aims to assess the safety and tolerability of metformin treatment in overweight and obese dengue patients, and investigate its effects on several clinical, immunological and virological markers of disease severity. Methods: This open label trial of 120 obese/overweight dengue patients will be performed in two phases, with a metformin dose escalation if no safety concerns arise in phase one. The primary endpoint is identification of clinical and laboratory adverse events. Sixty overweight and obese dengue patients aged 10-30 years will be enrolled at the Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam. Participants will complete a 5-day course of metformin therapy and be compared to a non-treated group of 60 age-matched overweight and obese dengue patients. Discussion: Previously observed antiviral and immunomodulatory effects of metformin make it a promising dengue therapeutic candidate in appropriately selected patients. This study will assess the safety and tolerability of adjunctive metformin in the management of overweight and obese young dengue patients, as well as its effects on markers of viral replication, endothelial dysfunction and host immune responses. Trial registration: ClinicalTrials.gov: NCT04377451 (May 6th 2020)

    Applied machine learning for the risk-stratification and clinical decision support of hospitalised patients with dengue in Vietnam

    No full text
    Background Identifying patients at risk of dengue shock syndrome (DSS) is vital for effective healthcare delivery. This can be challenging in endemic settings because of high caseloads and limited resources. Machine learning models trained using clinical data could support decision-making in this context. Methods We developed supervised machine learning prediction models using pooled data from adult and paediatric patients hospitalised with dengue. Individuals from 5 prospective clinical studies in Ho Chi Minh City, Vietnam conducted between 12th April 2001 and 30th January 2018 were included. The outcome was onset of dengue shock syndrome during hospitalisation. Data underwent random stratified splitting at 80:20 ratio with the former used only for model development. Ten-fold cross-validation was used for hyperparameter optimisation and confidence intervals derived from percentile bootstrapping. Optimised models were evaluated against the hold-out set. Findings The final dataset included 4,131 patients (477 adults and 3,654 children). DSS was experienced by 222 (5.4%) of individuals. Predictors were age, sex, weight, day of illness at hospitalisation, indices of haematocrit and platelets over first 48 hours of admission and before the onset of DSS. An artificial neural network model (ANN) model had best performance with an area under receiver operator curve (AUROC) of 0.83 (95% confidence interval [CI], 0.76–0.85) in predicting DSS. When evaluated against the independent hold-out set this calibrated model exhibited an AUROC of 0.82, specificity of 0.84, sensitivity of 0.66, positive predictive value of 0.18 and negative predictive value of 0.98. Interpretation The study demonstrates additional insights can be obtained from basic healthcare data, when applied through a machine learning framework. The high negative predictive value could support interventions such as early discharge or ambulatory patient management in this population. Work is underway to incorporate these findings into an electronic clinical decision support system to guide individual patient management

    Neutralizing antibodies against enteroviruses in patients with hand, foot and mouth disease

    No full text
    Hand, foot and mouth disease (HFMD) is an emerging infection with pandemic potential. Knowledge of neutralizing antibody responses among its pathogens is essential to inform vaccine development and epidemiologic research. We used 120 paired-plasma samples collected at enrollment and >7 days after the onset of illness from HFMD patients infected with enterovirus A71 (EV-A71), coxsackievirus A (CVA) 6, CVA10, and CVA16 to study cross neutralization. For homotypic viruses, seropositivity increased from <60% at enrollment to 97%–100% at follow-up, corresponding to seroconversion rates of 57%–93%. Seroconversion for heterotypic viruses was recorded in only 3%–23% of patients. All plasma samples from patients infected with EV-A71 subgenogroup B5 could neutralize the emerging EV-A71 subgenogroup C4. Collectively, our results support previous reports about the potential benefit of EV-A71 vaccine but highlight the necessity of multivalent vaccines to control HFMD
    corecore