546 research outputs found
Quantum Communications with Compressed Decoherence Using Bright Squeezed Light
We propose a scheme for long-distance distribution of quantum entanglement in
which the entanglement between qubits at intermediate stations of the channel
is established by using bright light pulses in squeezed states coupled to the
qubits in cavities with a weak dispersive interaction. The fidelity of the
entanglement between qubits at the neighbor stations (10 km apart from each
other) obtained by postselection through the balanced homodyne detection of 7
dB squeezed pulses can reach F=0.99 without using entanglement purification, at
same time, the probability of successful generation of entanglement is 0.34.Comment: 4 pages, 2 figure
Experimental demonstration of a universally valid error-disturbance uncertainty relation in spin-measurements
The uncertainty principle generally prohibits determination of certain pairs
of quantum mechanical observables with arbitrary precision and forms the basis
of indeterminacy in quantum mechanics. It was Heisenberg who used the famous
gamma-ray microscope thought experiment to illustrate this indeterminacy. A
lower bound was set for the product of the measurement error of an observable
and the disturbance caused by the measurement. Later on, the uncertainty
relation was reformulated in terms of standard deviations, which focuses solely
on indeterminacy of predictions and neglects unavoidable recoil in measuring
devices. A correct formulation of the error-disturbance relation, taking recoil
into account, is essential for a deeper understanding of the uncertainty
principle. However, the validity of Heisenberg's original error-disturbance
uncertainty relation is justifed only under limited circumstances. Another
error-disturbance relation, derived by rigorous and general theoretical
treatments of quantum measurements, is supposed to be universally valid. Here,
we report a neutron optical experiment that records the error of a
spin-component measurement as well as the disturbance caused on another
spin-component measurement. The results confirm that both error and disturbance
completely obey the new, more general relation but violate the old one in a
wide range of an experimental parameter.Comment: 11 pages, 5 figures, Nature Physics (in press
Nature of light correlations in ghost imaging
We investigate the nature of correlations in Gaussian light sources used for
ghost imaging. We adopt methods from quantum information theory to distinguish
genuinely quantum from classical correlations. Combining a microscopic analysis
of speckle-speckle correlations with an effective coarse-grained description of
the beams, we show that quantum correlations exist even in `classical'-like
thermal light sources, and appear relevant for the implementation of ghost
imaging in the regime of low illumination. We further demonstrate that the
total correlations in the thermal source beams effectively determine the
quality of the imaging, as quantified by the signal-to-noise ratio.Comment: 12 pages, 5 figures. To appear in Scientific Reports (NPG
Update on the Risk of Hepatocellular Carcinoma in Chronic Hepatitis B Virus Infection
Chronic hepatitis B virus infection is an important cause of liver-related morbidity and mortality, with hepatocellular carcinoma being the most life-threatening complication. Because of the highly variable clinical course of the disease, enormous research efforts have been made with the aim of revealing the factors in the natural history that are relevant to hepatocarcinogenesis. These include epidemiological studies of predisposing risk groups, viral studies of mutations within the hepatitis B viral genome, and clinical correlation of these risk factors in predicting the likelihood of development of hepatocellular cancer in susceptible hosts. This update addresses these risks, with emphasis on the latest research relevant to hepatocarcinogenesis
Critical analysis of the Bennett-Riedel attack on secure cryptographic key distributions via the Kirchhoff-law-Johnson-noise scheme
Recently, Bennett and Riedel (BR) (http://arxiv.org/abs/1303.7435v1) argued that thermodynamics is not essential in the Kirchhoff-law–Johnson-noise (KLJN) classical physical cryptographic exchange method in an effort to disprove the security of the KLJN scheme. They attempted to demonstrate this by introducing a dissipation-free deterministic key exchange method with two batteries and two switches. In the present paper, we first show that BR's scheme is unphysical and that some elements of its assumptions violate basic protocols of secure communication. All our analyses are based on a technically unlimited Eve with infinitely accurate and fast measurements limited only by the laws of physics and statistics. For non-ideal situations and at active (invasive) attacks, the uncertainly principle between measurement duration and statistical errors makes it impossible for Eve to extract the key regardless of the accuracy or speed of her measurements. To show that thermodynamics and noise are essential for the security, we crack the BR system with 100% success via passive attacks, in ten different ways, and demonstrate that the same cracking methods do not function for the KLJN scheme that employs Johnson noise to provide security underpinned by the Second Law of Thermodynamics. We also present a critical analysis of some other claims by BR; for example, we prove that their equations for describing zero security do not apply to the KLJN scheme. Finally we give mathematical security proofs for each BR-attack against the KLJN scheme and conclude that the information theoretic (unconditional) security of the KLJN method has not been successfully challenged.Laszlo B. Kish, Derek Abbott, Claes G. Granqvis
The Flat Transmission Spectrum of the Super-Earth GJ1214b from Wide Field Camera 3 on the Hubble Space Telescope
Capitalizing on the observational advantage offered by its tiny M dwarf host,
we present HST/WFC3 grism measurements of the transmission spectrum of the
super-Earth exoplanet GJ1214b. These are the first published WFC3 observations
of a transiting exoplanet atmosphere. After correcting for a ramp-like
instrumental systematic, we achieve nearly photon-limited precision in these
observations, finding the transmission spectrum of GJ1214b to be flat between
1.1 and 1.7 microns. Inconsistent with a cloud-free solar composition
atmosphere at 8.2 sigma, the measured achromatic transit depth most likely
implies a large mean molecular weight for GJ1214b's outer envelope. A dense
atmosphere rules out bulk compositions for GJ1214b that explain its large
radius by the presence of a very low density gas layer surrounding the planet.
High-altitude clouds can alternatively explain the flat transmission spectrum,
but they would need to be optically thick up to 10 mbar or consist of particles
with a range of sizes approaching 1 micron in diameter.Comment: 17 pages, 12 figures, accepted for publication in Ap
The Higgs boson in the MSSM in light of the LHC
We investigate the expectations for the light Higgs signal in the MSSM in
different search channels at the LHC. After taking into account dark matter and
flavor constraints in the MSSM with eleven free parameters, we show that the
light Higgs signal in the channel is expected to be at most at
the level of the SM Higgs, while the from W fusion
and/or the can be enhanced. For the main discovery
mode, we show that a strong suppression of the signal occurs in two different
cases: low or large invisible width. A more modest suppression is
associated with the effect of light supersymmetric particles. Looking for such
modification of the Higgs properties and searching for supersymmetric partners
and pseudoscalar Higgs offer two complementary probes of supersymmetry.Comment: 19 pages, 8 figure
Quadrature squeezed photons from a two-level system.
Resonance fluorescence arises from the interaction of an optical field with a two-level system, and has played a fundamental role in the development of quantum optics and its applications. Despite its conceptual simplicity, it entails a wide range of intriguing phenomena, such as the Mollow-triplet emission spectrum, photon antibunching and coherent photon emission. One fundamental aspect of resonance fluorescence--squeezing in the form of reduced quantum fluctuations in the single photon stream from an atom in free space--was predicted more than 30 years ago. However, the requirement to operate in the weak excitation regime, together with the combination of modest oscillator strength of atoms and low collection efficiencies, has continued to necessitate stringent experimental conditions for the observation of squeezing with atoms. Attempts to circumvent these issues had to sacrifice antibunching, owing to either stimulated forward scattering from atomic ensembles or multi-photon transitions inside optical cavities. Here, we use an artificial atom with a large optical dipole enabling 100-fold improvement of the photon detection rate over the natural atom counterpart and reach the necessary conditions for the observation of quadrature squeezing in single resonance-fluorescence photons. By implementing phase-dependent homodyne intensity-correlation detection, we demonstrate that the electric field quadrature variance of resonance fluorescence is three per cent below the fundamental limit set by vacuum fluctuations, while the photon statistics remain antibunched. The presence of squeezing and antibunching simultaneously is a fully non-classical outcome of the wave-particle duality of photons.We acknowledge financial support from the University of Cambridge, the European Research Council ERC Consolidator Grant Agreement No. 617985 and the EU-FP7 Marie Curie Initial Training Network S3NANO. C.M. acknowledges Clare College Cambridge for financial support through a Junior Research Fellowship.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1486
Somatostatin receptor in human hepatocellular carcinomas: Biological, patient and tumor characteristics
Background/Aim: The evidence on the efficacy of somatostatin analogues in the treatment of hepatocellular carcinoma (HCC) in humans is conflicting. A variety of human tumors demonstrate somatostatin receptors. All subtypes bind human somatostatin with high affinity, while somatostatin analogues bind with high affinity to somatostatin receptor subtype 2 (sst2). We investigated the sst2 expression in HCC and examined whether HCCs expressing sst2 are a distinct subgroup. Patients and Methods: Forty-five human HCCs were tested for sst2 expression and biological alterations. The proliferative capacity was determined with Ki67 immunostaining and the DNA ploidy status was measured by fluorescent in situ hybridization with a chromosome 1-specific repetitive DNA probe. Expression of tumor suppressor genes (p16, p53 and Rb1) was measured by immunohistochemistry. Results: sst2 expression was detected in 30 tumors (67%). No correlation existed between sst2 expression and the immunoprofiles of the tumor suppressor genes, aneuploidy, proliferation, age, gender, α-fetoprotein levels, tumor size, tumor grade and underlying liver disease. Conclusion: In 67% of the patients with HCC, sst2 could be detected in the tumor. No clinical, pathological or biological characteristics were specific for sst2-positive tumors. Copyrigh
Magnetic and Electronic Properties of Metal-Atom Adsorbed Graphene
We systematically investigate the magnetic and electronic properties of
graphene adsorbed with diluted 3d-transition and noble metal atoms using first
principles calculation methods. We find that most transition metal atoms (i.e.
Sc, Ti, V, Mn, Fe) favor the hollow adsorption site, and the interaction
between magnetic adatoms and \pi-orbital of graphene induces sizable exchange
field and Rashba spin-orbit coupling, which together open a nontrivial bulk gap
near the Dirac points leading to the quantum-anomalous Hall effect. We also
find that the noble metal atoms (i.e. Cu, Ag, Au) prefer the top adsorption
site, and the dominant inequality of the AB sublattice potential opens another
kind of nontrivial bulk gap exhibiting the quantum-valley Hall effect.Comment: Submitted to PRL on Aug. 10, 2011. 11 pages(4.5 pages for the main
text and 6.5 pages for the supporting materials
- …