13 research outputs found

    Membrane Association of the PTEN Tumor Suppressor: Molecular Details of the Protein-Membrane Complex from SPR Binding Studies and Neutron Reflection

    Get PDF
    The structure and function of the PTEN phosphatase is investigated by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act pronouncedly synergistic in pulling the enzyme to the membrane surface. The equilibrium dissociation constants for the binding of wild type (wt) PTEN to PS and PI(4,5)P2 were determined to be Kd∼12 µM and 0.4 µM, respectively, and Kd∼50 nM if both lipids are present. Membrane affinities depend critically on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. The PTEN mutations C124S and H93R show binding affinities that deviate strongly from those measured for the wt protein. Both mutants bind PS more strongly than wt PTEN. While C124S PTEN has at least the same affinity to PI(4,5)P2 and an increased apparent affinity to PI(3,4,5)P3, due to its lack of catalytic activity, H93R PTEN shows a decreased affinity to PI(4,5)P2 and no synergy in its binding with PS and PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase “scoots" along the membrane surface (penetration <5 Å) but binds the membrane tightly with its two major domains, the C2 and phosphatase domains, as suggested by the crystal structure. The regulatory C-terminal tail is most likely displaced from the membrane and organized on the far side of the protein, ∼60 Å away from the bilayer surface, in a rather compact structure. The combination of binding studies and neutron reflection allows us to distinguish between PTEN mutant proteins and ultimately may identify the structural features required for membrane binding and activation of PTEN

    Composition and Asymmetry in Supported Membranes Formed by Vesicle Fusion

    No full text
    The structure and formation of supported membranes at silica surfaces by vesicle fusion was investigated by neutron reflectivity and quartz crystal microbalance (QCM-D) measurements. The structure of equimolar phospholipid mixtures of DLPC?DPPC, DMPC?DPPC, and DOPC?DPPC depends intricately on the vesicle deposition conditions. The supported bilayer membranes exhibit varying degrees of compositional asymmetry between the monolayer leaflets, which can be modified by the deposition temperature as well as the salt concentration of the vesicle solution. The total lipid composition of the supported bilayers differs from the composition of the vesicles in solution, and the monolayer proximal to the silica surface is always enriched in DPPC compared to the distal monolayer. The results, which show unambiguougsly that some exchange and rearrangement of lipids occur during vesicle deposition, can be rationalized by considering the effects of salt screening and temperature on the rates of lipid exchange, rearrangement, and vesicle adsorption, but there is also an intricate dependence on the lipid?lipid interactions. Thus, although both symmetric and asymmetric supported bilayers can be prepared from vesicles, the optimal conditions are sensitive to the lipid composition of the system. Š 2011, Royal Society of Chemistr

    Interfacial mechanism of phospholipase A(2): pH-dependent inhibition and Me-β-cyclodextrin activation.

    No full text
    The pH-dependent activity of phospholipase A(2) (PLA(2)) from Naja mossambica mossambica venom and the membrane-water partitioning of the lipid hydrolysis products were investigated in solid-supported palmitoyl-oleyl-phosphatidylcholine-d(31) (POPC-d(31)) membranes using neutron reflection. At pH 5, PLA(2) interacts only weakly with the substrate membrane and leads to no observable membrane breakdown, which is consistent with protonation of the catalytic histidine (His48, pK(a) similar to 6.2). The rate of the lyso-lipid partitioning into the solution phase is the same at pH 9 as at pH 7.4, and the relative membrane-water partitioning of the products is essentially the same; that is, the fatty acid accumulates in the membrane, and only the lyso-lipid is solubilized. However, Me-β-cyclodextrin (Me-β-CD) activates PLA(2) irrespective of pH by facilitating the solubilization of the lyso-lipid product, but not the fatty acid, of which only 22% is encapsulated at pH 9. Since no product solubilization is observed at pH 5 in the absence of Me-β-CD, this suggests that the hydrolytic mechanism of PLA(2) is not fully disabled at pH 5 but is inhibited by a mechanism, which is counteracted by Me-p-M-mediated release of the lyso-lipid. Me-β-CD does not interact with the substrate membrane, which indicates that at low pH the product extraction occurs directly from the enzyme active site outside the immediate membrane-water interface, whereas at pH 7-9, direct solubilization of the lyso-lipid from the membrane can also contribute to activation of PLA(2). Š 2009, American Chemical Societ

    Cyclotides insert into lipid bilayers to form membrane pores and destabilize the membrane through hydrophobic and phosphoethanolamine-specific interactions

    No full text
    Cyclotides are a family of plant-derived circular proteins with potential therapeutic applications arising from their remarkable stability, broad sequence diversity, and range of bioactivities. Their membrane-binding activity is believed to be a critical component of their mechanism of action. Using isothermal titration calorimetry, we studied the binding of the prototypical cyclotides kalata B1 and kalata B2 (and various mutants) to dodecylphosphocholine micelles and phosphoethanolamine-containing lipid bilayers. Although binding is predominantly an entropy-driven process, suggesting that hydrophobic forces contribute significantly to cyclotide-lipid complex formation, specific binding to the phosphoethanolamine-lipid headgroup is also required, which is evident from the enthalpic changes in the free energy of binding. In addition, using a combination of dissipative quartz crystal microbalance measurements and neutron reflectometry, we elucidated the process by which cyclotides interact with bilayer membranes. Initially, a small number of cyclotides bind to the membrane surface and then insert first into the outer membrane leaflet followed by penetration through the membrane and pore formation. At higher concentrations of cyclotides, destabilization of membranes occurs. Our results provide significant mechanistic insight into how cyclotides exert their bioactivities. Š 2012, American Society for Biochemistry and Molecular Biology

    Structural effects of the antimicrobial peptide maculatin 1.1 on supported lipid bilayers

    Get PDF
    The interactions of the antimicrobial peptide maculatin 1.1 (GLFGVLAKVAAHVVPAIAEHF-NH2) with model phospholipid membranes were studied by use of dual polarisation interferometry and neutron reflectometry and dimyristoylphosphatidylcholine (DMPC) and mixed DMPC–dimyristoylphosphatidylglycerol (DMPG)-supported lipid bilayers chosen to mimic eukaryotic and prokaryotic membranes, respectively. In DMPC bilayers concentration-dependent binding and increasing perturbation of bilayer order by maculatin were observed. By contrast, in mixed DMPC–DMPG bilayers, maculatin interacted more strongly and in a concentration-dependent manner with retention of bilayer lipid order and structure, consistent with pore formation. These results emphasise the importance of membrane charge in mediating antimicrobial peptide activity and emphasise the importance of using complementary methods of analysis in probing the mode of action of antimicrobial peptides
    corecore