57 research outputs found

    A Preference for Contralateral Stimuli in Human Object- and Face-Selective Cortex

    Get PDF
    Visual input from the left and right visual fields is processed predominantly in the contralateral hemisphere. Here we investigated whether this preference for contralateral over ipsilateral stimuli is also found in high-level visual areas that are important for the recognition of objects and faces. Human subjects were scanned with functional magnetic resonance imaging (fMRI) while they viewed and attended faces, objects, scenes, and scrambled images in the left or right visual field. With our stimulation protocol, primary visual cortex responded only to contralateral stimuli. The contralateral preference was smaller in object- and face-selective regions, and it was smallest in the fusiform gyrus. Nevertheless, each region showed a significant preference for contralateral stimuli. These results indicate that sensitivity to stimulus position is present even in high-level ventral visual cortex

    Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis

    Get PDF
    Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies

    Knowing with Which Eye We See: Utrocular Discrimination and Eye-Specific Signals in Human Visual Cortex

    Get PDF
    Neurophysiological and behavioral reports converge to suggest that monocular neurons in the primary visual cortex are biased toward low spatial frequencies, while binocular neurons favor high spatial frequencies. Here we tested this hypothesis with functional magnetic resonance imaging (fMRI). Human participants viewed flickering gratings at one of two spatial frequencies presented to either the left or the right eye, and judged which of the two eyes was being stimulated (utrocular discrimination). Using multivoxel pattern analysis we found that local spatial patterns of signals in primary visual cortex (V1) allowed successful decoding of the eye-of-origin. Decoding was above chance for low but not high spatial frequencies, confirming the presence of a bias reported by animal studies in human visual cortex. Behaviorally, we found that reliable judgment of the eye-of-origin did not depend on spatial frequency. We further analyzed the mean response in visual cortex to our stimuli and revealed a weak difference between left and right eye stimulation. Our results are thus consistent with the interpretation that participants use overall levels of neural activity in visual cortex, perhaps arising due to local luminance differences, to judge the eye-of-origin. Taken together, we show that it is possible to decode eye-specific voxel pattern information in visual cortex but, at least in healthy participants with normal binocular vision, these patterns are unrelated to awareness of which eye is being stimulated

    Perceptual expertise improves category detection in natural scenes

    Get PDF
    There is much debate about how detection, categorization, and within-category identification relate to one another during object recognition. Whether these tasks rely on partially shared perceptual mechanisms may be determined by testing whether training on one of these tasks facilitates performance on another. In the present study we asked whether expertise in discriminating objects improves the detection of these objects in naturalistic scenes. Self-proclaimed car experts (N = 34) performed a car discrimination task to establish their level of expertise, followed by a visual search task where they were asked to detect cars and people in hundreds of photographs of natural scenes. Results revealed that expertise in discriminating cars was strongly correlated with car detection accuracy. This effect was specific to objects of expertise, as there was no influence of car expertise on person detection. These results indicate a close link between object discrimination and object detection performance, which we interpret as reflecting partially shared perceptual mechanisms and neural representations underlying these tasks: the increased sensitivity of the visual system for objects of expertise – as a result of extensive discrimination training – may benefit both the discrimination and the detection of these objects. Alternative interpretations are also discussed

    Birds of a Feather Flock Together: Experience-Driven Formation of Visual Object Categories in Human Ventral Temporal Cortex

    Get PDF
    The present functional magnetic resonance imaging study provides direct evidence on visual object-category formation in the human brain. Although brain imaging has demonstrated object-category specific representations in the occipitotemporal cortex, the crucial question of how the brain acquires this knowledge has remained unresolved. We designed a stimulus set consisting of six highly similar bird types that can hardly be distinguished without training. All bird types were morphed with one another to create different exemplars of each category. After visual training, fMRI showed that responses in the right fusiform gyrus were larger for bird types for which a discrete category-boundary was established as compared with not-trained bird types. Importantly, compared with not-trained bird types, right fusiform responses were smaller for visually similar birds to which subjects were exposed during training but for which no category-boundary was learned. These data provide evidence for experience-induced shaping of occipitotemporal responses that are involved in category learning in the human brain

    The representation of symmetry in multi-voxel response patterns and functional connectivity throughout the ventral visual stream

    No full text
    Several computational models explain how symmetry might be detected and represented in the human brain. However, while there is an abundance of psychophysical studies on symmetry detection and several neural studies showing where and when symmetry is detected in the brain, important questions remain about how this detection happens and how symmetric patterns are represented. We studied the representation of (vertical) symmetry in regions of the ventral visual stream, using multi-voxel pattern analyses (MVPA) and functional connectivity analyses. Our results suggest that neural representations gradually change throughout the ventral visual stream, from very similar part-based representations for symmetrical and asymmetrical stimuli in V1 and V2, over increasingly different representations for symmetrical and asymmetrical stimuli which are nevertheless still part-based in both V3 and V4, to a more holistic representation for symmetrical compared to asymmetrical stimuli in high-level LOC. This change in representations is accompanied by increased communication between left and right retinotopic areas, evidenced by higher interhemispheric functional connectivity during symmetry perception in areas V2 and V4

    Multi-method brain imaging reveals impaired representations of number as well as altered connectivity in adults with dyscalculia

    No full text
    Two hypotheses have been proposed about the etiology of neurodevelopmental learning disorders, such as dyslexia and dyscalculia: representation impairments and disrupted access to representations. We implemented a multi-method brain imaging approach to directly investigate these representation and access hypotheses in dyscalculia, a highly prevalent but understudied neurodevelopmental disorder in learning to calculate. We combined several magnetic resonance imaging methods and analyses, including univariate and multivariate analyses, functional and structural connectivity. Our sample comprised 24 adults with dyscalculia and 24 carefully matched controls. Results showed a clear deficit in the non-symbolic magnitude representations in parietal, temporal and frontal regions, as well as hyper-connectivity in visual brain regions in adults with dyscalculia. Dyscalculia in adults was thereby related to both impaired number representations and altered connectivity in the brain. We conclude that dyscalculia is related to impaired number representations as well as altered access to these representations

    Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning.

    No full text
    The multiple memory systems hypothesis posits that dorsal striatum and hippocampus are central nodes in independent memory systems, supporting response-based and place-based learning, respectively. Although our understanding of the function of hippocampus within this framework is relatively well established, the contribution of dorsal striatum is less clear. This in part seems to be due to the heterogeneous nature of dorsal striatum, which receives extensive topographically organized projections from higher cortical areas. Here we quantified neural activity in the intact brain while mice and humans acquired analogous versions of the Morris water maze. We found that dorsomedial striatum and medial prefrontal cortex support the initial acquisition of what is typically considered a hippocampus-dependent spatial learning task. We suggest that the circuit involving dorsomedial striatum and medial prefrontal cortex identified here plays a more task-independent role in early learning than currently thought. Furthermore, our results demonstrate that dorsomedial and dorsolateral striatum serve fundamentally different roles during place learning. The remarkably high degree of anatomical overlap in brain function between mouse and human observed in our study emphasizes the extent of convergence achievable with a well-matched multilevel approach

    Intact but less accessible phonetic representations in adults with dyslexia.

    No full text
    Dyslexia is a severe and persistent reading and spelling disorder caused by impairment in the ability to manipulate speech sounds. We combined functional magnetic resonance brain imaging with multivoxel pattern analysis and functional and structural connectivity analysis in an effort to disentangle whether dyslexics' phonological deficits are caused by poor quality of the phonetic representations or by difficulties in accessing intact phonetic representations. We found that phonetic representations are hosted bilaterally in primary and secondary auditory cortices and that their neural quality (in terms of robustness and distinctness) is intact in adults with dyslexia. However, the functional and structural connectivity between the bilateral auditory cortices and the left inferior frontal gyrus (a region involved in higher-level phonological processing) is significantly hampered in dyslexics, suggesting deficient access to otherwise intact phonetic representations

    Intact but less accessible phonetic representations in adults with dyslexia.

    No full text
    Dyslexia is a severe and persistent reading and spelling disorder caused by impairment in the ability to manipulate speech sounds. We combined functional magnetic resonance brain imaging with multivoxel pattern analysis and functional and structural connectivity analysis in an effort to disentangle whether dyslexics' phonological deficits are caused by poor quality of the phonetic representations or by difficulties in accessing intact phonetic representations. We found that phonetic representations are hosted bilaterally in primary and secondary auditory cortices and that their neural quality (in terms of robustness and distinctness) is intact in adults with dyslexia. However, the functional and structural connectivity between the bilateral auditory cortices and the left inferior frontal gyrus (a region involved in higher-level phonological processing) is significantly hampered in dyslexics, suggesting deficient access to otherwise intact phonetic representations
    • …
    corecore