77 research outputs found

    Endothelial function and urine albumin levels among asymptomatic Mexican-Americans and non-Hispanic whites

    Get PDF
    <p>Abstract</p> <p>Background-</p> <p>Mexican-Americans (MA) exhibit increases in various cardiovascular disease (CVD) risk factors compared to non-Hispanic Whites (NHW), yet are reported to have lower CVD mortality rates. Our aim was to help explain this apparent paradox by evaluating endothelial function and urine albumin levels in MA and NHW.</p> <p>Methods-</p> <p>One hundred-five MA and 100 NHW adults were studied by brachial artery flow-mediated dilatation (FMD), blood and urine tests. Participants were studied by ultrasound-determined brachial artery flow-mediated dilatation (FMD), blood and urine tests, at a single visit.</p> <p>Results-</p> <p>Despite higher BMI and triglycerides in MA, MA demonstrated higher FMD than did NHW (9.1 ± 7.3% vs. 7.1 ± 6.3%, p < 0.04). Among MA, urinary albumin was consistently lower in participants with FMD ≥ 7% FMD versus < 7% FMD (p < 0.006). In multivariate analyses in MA men, urinary albumin was inversely related to FMD (r = -0.26, p < 0.05), as were BMI and systolic blood pressure. In MA women, urinary albumin:creatinine ratio was an independent inverse predictor of FMD (p < 0.05 ).</p> <p>Conclusion-</p> <p>To our knowledge, this is the first study to analyze, in asymptomatic adults, the relation of MA and NHW ethnicity to FMD and urine albumin levels. The findings confirm ethnic differences in these important subclinical CVD measures.</p

    Generational status and duration of residence predict diabetes prevalence among Latinos: the California Men's Health Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetes disproportionately affects Latinos. However, examining Latinos as one group obscures important intra-group differences. This study examined how generational status, duration of US residence, and language preference are associated with diabetes prevalence and to what extent these explain the higher prevalence among Latinos.</p> <p>Methods</p> <p>We determined nativity, duration of US residence, language preference, and diabetes prevalence among 11 817 Latino, 6109 black, and 52 184 white participants in the California Men's Health Study. We combined generational status and residence duration into a single migration status variable with levels: ≥ third generation; second generation; and immigrant living in the US for > 25, 16-25, 11-15, or ≤ 10 years. Language preference was defined as language in which the participant took the survey. Logistic regression models were specified to assess the associations of dependent variables with prevalent diabetes.</p> <p>Results</p> <p>Diabetes prevalence was 22%, 23%, and 11% among Latinos, blacks, and whites, respectively. In age-adjusted models, we observed a gradient of risk of diabetes by migration status among Latinos. Further adjustment for socioeconomic status, obesity and health behaviors only partially attenuated this gradient. Language preference was a weak predictor of prevalent diabetes in some models and not significant in others. In multivariate models, we found that odds of diabetes were higher among US-born Latinos than US-born blacks.</p> <p>Conclusion</p> <p>Generational status and residence duration were associated with diabetes prevalence among middle-aged Latino men in California. As the Latino population grows, the burden of diabetes-associated disease is likely to increase and demands public health attention.</p

    Susceptibility of Human Lymphoid Tissue Cultured ex vivo to Xenotropic Murine Leukemia Virus-Related Virus (XMRV) Infection

    Get PDF
    BACKGROUND: Xenotropic murine leukemia virus-related virus (XMRV) was generated after a recombination event between two endogenous murine leukemia viruses during the production of a prostate cancer cell line. Although the associations of the XMRV infection with human diseases appear unlikely, the XMRV is a retrovirus of undefined pathogenic potential, able to replicate in human cells in vitro. Since recent studies using animal models for infection have yielded conflicting results, we set out an ex vivo model for XMRV infection of human tonsillar tissue to determine whether XMRV produced by 22Rv1 cells is able to replicate in human lymphoid organs. Tonsil blocks were infected and infection kinetics and its pathogenic effects were monitored RESULTS: XMRV, though restricted by APOBEC, enters and integrates into the tissue cells. The infection did not result in changes of T or B-cells, immune activation, nor inflammatory chemokines. Infectious viruses could be recovered from supernatants of infected tonsils by reinfecting DERSE XMRV indicator cell line, although these supernatants could not establish a new infection in fresh tonsil culture, indicating that in our model, the viral replication is controlled by innate antiviral restriction factors. CONCLUSIONS: Overall, the replication-competent retrovirus XMRV, present in a high number of laboratories, is able to infect human lymphoid tissue and produce infectious viruses, even though they were unable to establish a new infection in fresh tonsillar tissue. Hereby, laboratories working with cell lines producing XMRV should have knowledge and understanding of the potential biological biohazardous risks of this virus

    Deciphering the Code for Retroviral Integration Target Site Selection

    Get PDF
    Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of integration, little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14 retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-oncogene LMO2 identical to experimentally determined values. The supermarker thus identifies chromosomal features highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses

    Effects of Clopidogrel Added to Aspirin in Patients with Recent Lacunar Stroke

    No full text
    corecore