29 research outputs found
Evidence for Cognitive Impairment in Mastocytosis: Prevalence, Features and Correlations to Depression
Mastocytosis is a heterogeneous disease characterized by mast cells accumulation in one or more organs. We have reported that depression is frequent in mastocytosis, but although it was already described, little is known about the prevalence and features of cognitive impairment. Our objective was to describe the prevalence and features of cognitive impairment in a large cohort of patients with this rare disease (n = 57; mean age = 45) and to explore the relations between memory impairment and depression. Objective memory impairment was evaluated using the 3rd edition of the Clinical Memory scale of Wechsler. Depression symptoms were evaluated using the Hamilton Depression Rating Scale. Age and education levels were controlled for all patients. Patients with mastocytosis presented high levels of cognitive impairment (memory and/or attention) (n = 22; 38.6%). Cognitive impairment was moderate in 59% of the cases, concerned immediate auditory (41%) and working memory (73%) and was not associated to depression (p≥0.717). In conclusion, immediate auditory memory and attention impairment in mastocytosis are frequent, even in young individuals, and are not consecutive to depression. In mastocytosis, cognitive complaints call for complex neuropsychological assessment. Mild-moderate cognitive impairment and depression constitute two specific but somewhat independent syndromes in mastocytosis. These results suggest differential effects of mast-cell activity in the brain, on systems involved in emotionality and in cognition
Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish
© The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Genomics 11 (2010): 643, doi:10.1186/1471-2164-11-643.Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates. There are orthologous relationships for some CYP1 s and some CYP3 s between zebrafish and human. In contrast, zebrafish have 47 CYP2 genes, compared to 16 in human, with only two (CYP2R1 and CYP2U1) recognized as orthologous based on sequence. Analysis of shared synteny identified CYP2 gene clusters evolutionarily related to mammalian CYP2 s, as well as unique clusters. Transcript profiling by microarray and quantitative PCR revealed that the majority of zebrafish CYP genes are expressed in embryos, with waves of expression of different sets of genes over the course of development. Transcripts of some CYP occur also in oocytes. The results provide a foundation for the use of zebrafish as a model in toxicological, pharmacological and chemical disease research.This work was supported by NIH grants R01ES015912 and P42ES007381 (Superfund Basic Research Program at Boston University) (to JJS). MEJ was a Guest Investigator at the Woods Hole Oceanographic Institution (WHOI) and was supported by grants from the Swedish research council Formas and Carl Trygger's foundation. AK was a Post-doctoral Fellow at WHOI, and was supported by a fellowship from the Japanese Society for Promotion of Science (JSPS). JZ and TP were Guest Students at the WHOI and were supported by a CAPES Ph.D. Fellowship and CNPq Ph.D. Sandwich Fellowship (JZ), and by a CNPq Ph.D. Fellowship (TP), from Brazil
ISSN exercise & sport nutrition review: research & recommendations
Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients
Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?
peer reviewedBackground
Aboveground, plants release volatile organic compounds (VOCs) that act as chemical
signals between neighbouring plants. It is now well documented that VOCs emitted by
the roots in the plant rhizosphere also play important ecological roles in the soil
ecosystem, notably in plant defence because they are involved in interactions between
plants, phytophagous pests and organisms of the third trophic level. The roles played
by root-emitted VOCs in between- and within-plant signalling, however, are still poorly
documented in the scientific literature.
Scope
Given that (1) plants release volatile cues mediating plant-plant interactions
aboveground, (2) roots can detect the chemical signals originating from their
neighbours, and (3) roots release VOCs involved in biotic interactions belowground,
the aim of this paper is to discuss the roles of VOCs in between- and within-plant
signalling belowground. We also highlight the technical challenges associated with the
analysis of root-emitted VOCs and the design of experiments targeting volatile-mediated
root-root interactions.
Conclusions
We conclude that root-root interactions mediated by volatile cues deserve more
research attention and that both the analytical tools and methods developed to study
the ecological roles played by VOCs in interplant signalling aboveground can be
adapted to focus on the roles played by root-emitted VOCs in between- and within-plant
signalling
Effect of Copper on Corrosion of Forged AlSi1MgMn Automotive Suspension Components
Recently, modifications in the alloy composition and the manufacturing process cycle were proposed to achieve a more uniform structure with no evidence of coarse grains across the section of the AlSi1MgMn alloys. Cu was added to the AlSi1MgMn alloy to improve its age hardening capacity without a separate solution heat treatment. However, Cu addition degrades the corrosion resistance of this alloy due to the formation of Al-Cu precipitates along the grain boundaries that are cathodic with respect to the aluminum matrix and thus encourage intergranular corrosion. The present work was undertaken to identify the impact of Cu addition on the corrosion properties of AlSi1MgMn alloys with different Cu contents. A series of AlSi1MgMn alloys with 0.06-0.89 wt.% Cu were tested in order to identify an optimum level of Cu addition