8,240 research outputs found

    Relaxation properties of the quantum kinetics of carrier-LO-phonon interaction in quantum wells and quantum dots

    Full text link
    The time evolution of optically excited carriers in semiconductor quantum wells and quantum dots is analyzed for their interaction with LO-phonons. Both the full two-time Green's function formalism and the one-time approximation provided by the generalized Kadanoff-Baym ansatz are considered, in order to compare their description of relaxation processes. It is shown that the two-time quantum kinetics leads to thermalization in all the examined cases, which is not the case for the one-time approach in the intermediate-coupling regime, even though it provides convergence to a steady state. The thermalization criterion used is the Kubo-Martin-Schwinger condition.Comment: 7 pages, 8 figures, accepted for publication in Phys. Rev.

    Structure and decay at rapid proton capture waiting points

    Full text link
    We investigate the region of the nuclear chart around A70A \simeq 70 from a three-body perspective, where we compute reaction rates for the radiative capture of two protons. One key quantity is here the photon dissociation cross section for the inverse process where two protons are liberated from the borromean nucleus by photon bombardment. We find a number of peaks at low photon energy in this cross section where each peak is located at the energy corresponding to population of a three-body resonance. Thus, for these energies the decay or capture processes proceed through these resonances. However, the next step in the dissociation process still has the option of following several paths, that is either sequential decay by emission of one proton at a time with an intermediate two-body resonance as stepping stone, or direct decay into the continuum of both protons simultaneously. The astrophysical reaction rate is obtained by folding of the cross section as function of energy with the occupation probability for a Maxwell-Boltzmann temperature distribution. The reaction rate is then a function of temperature, and of course depending on the underlying three-body bound state and resonance structures. We show that a very simple formula at low temperature reproduces the elaborate numerically computed reaction rate.Comment: 4 pages, 3 figures, conference proceedings, publishe

    Book Reviews

    Get PDF

    Self-limited oxide formation in Ni(111) oxidation

    Full text link
    The oxidation of the Ni(111) surface is studied experimentally with low energy electron microscopy and theoretically by calculating the electron reflectivity for realistic models of the NiO/Ni(111) surface with an ab-initio scattering theory. Oxygen exposure at 300 K under ultrahigh-vacuum conditions leads to the formation of a continuous NiO(111)-like film consisting of nanosized domains. At 750 K, we observe the formation of a nano-heterogeneous film composed primarily of NiO(111)-like surface oxide nuclei, which exhibit virtually the same energy-dependent reflectivity as in the case of 300 K and which are separated by oxygen-free Ni(111) terraces. The scattering theory explains the observed normal incidence reflectivity R(E) of both the clean and the oxidized Ni(111) surface. At low energies R(E) of the oxidized surface is determined by a forbidden gap in the k_parallel=0 projected energy spectrum of the bulk NiO crystal. However, for both low and high temperature oxidation a rapid decrease of the reflectivity in approaching zero kinetic energy is experimentally observed. This feature is shown to characterize the thickness of the oxide layer, suggesting an average oxide thickness of two NiO layers.Comment: 10 pages (in journal format), 9 figure

    Collective flow and QCD phase transition

    Get PDF
    In the first part I discuss the sensitivity of collective matter expansion in ultrarelativistic heavy-ion collisions to the transition between quark and hadronic matter (physics of the softest point of the Equation of State). A kink in the centrality dependence of elliptic flow has been suggested as a signature for the phase transition in hot QCD matter. Indeed, preliminary data of NA49 presented at this conference show first indications for the predicted kink. In the second part I have a look at the present theories of heavy-ion reactions. These remarks may also be seen as a critical comment to B. Mueller's summary talk (nucl-th/9906029) presented at this conference.Comment: Write-up of QM '99 talk. Typo's correcte

    Mineral absorption in relation to nutritional ecology of reindeer

    Get PDF
    This paper addresses the way which absorption of minerals relate to nutritional ecology and mineral conservation processes. A latin square designed experiment was used to assess the effects of diet on mineral (Ca, Mg, K, Na) absorption processes in reindeer (Rangifer tarandus L.). Three male calves were fed 3 different diets: concentrate with 25% grass meal (RF-71), lichens, and a mixed diet of lichens and RF-71. Two other male calves were fed the lichen or mixed diet, supplemented with 4 g Ca/day. Ca supplementation significantly increased fecal Ca excretion, reduced the excretion of K and Mg, but had no significant effect on Na excretion. Rates of intake and fecal exretion of Ca, Mg and K were highly correlated (P<0.001), while no correlations were found for Na. Negative digestibilities of Ca, Mg and K, and a positive Na digestibility were noted for the lichen diet. For the other diets, all minerals were in positive digestibility, and Ca supplements increased the digestibility of all minerals. Digesta from different sections of the alimentary tract were collected after termination of the experiment. Alimentary pools of Ca and K were equal for animals fed lichen or RF-71, whereas the Na pool was largest on the lichen diet and the Mg pool largest on the RF-71 diet. Rumen turnover time (rumen mineral pool size/daily mineral intake) was consistently less than 3 days for Ca and Mg, but was 22 and 82 days for Na on the RF-71 and lichen diets respectively. Estimates of mineral exchange in various parts of the tract showed that the intestines play and important role in scavanging endogenously secreted minerals. Results are discussed with respect to mineral binding by lichens and the possible role of natural mineral supplements in the nutritional ecology of reindeer

    The order of the metal to superconductor transition

    Full text link
    We present results from large-scale Monte Carlo simulations on the full Ginzburg-Landau (GL) model, including fluctuations in the amplitude and the phase of the matter-field, as well as fluctuations of the non-compact gauge-field of the theory. {}From this we obtain a precise critical value of the GL parameter \kct separating a first order metal to superconductor transition from a second order one, \kct = (0.76\pm 0.04)/\sqrt{2}. This agrees surprisingly well with earlier analytical results based on a disorder theory of the superconductor to metal transition, where the value \kct=0.798/\sqrt{2} was obtained. To achieve this, we have done careful infinite volume and continuum limit extrapolations. In addition we offer a novel interpretation of \kct, namely that it is also the value separating \typeI and \typeII behaviour.<Comment: Minor corrections, present version accepted for publication in PR

    Emergence of clusters: Halos, Efimov states, and experimental signals

    Get PDF
    We investigate emergence of halos and Efimov states in nuclei by use of a newly designed model which combines self-consistent mean-field and three-body descriptions. Recent interest in neutron heavy calcium isotopes makes 72^{72}Ca (70^{70}Ca+n+n) an ideal realistic candidate on the neutron dripline, and we use it as a representative example that illustrates our broadly applicable conclusions. By smooth variation of the interactions we simulate the crossover from well-bound systems to structures beyond the threshold of binding, and find that halo-configurations emerge from the mean-field structure for three-body binding energy less than 100\sim 100keV. Strong evidence is provided that Efimov states cannot exist in nuclei. The structure that bears the most resemblance to an Efimov state is a giant halo extending beyond the neutron-core scattering length. We show that the observable large-distance decay properties of the wave function can differ substantially from the bulk part at short distances, and that this evolution can be traced with our combination of few- and many-body formalisms. This connection is vital for interpretation of measurements such as those where an initial state is populated in a reaction or by a beta-decay.Comment: 5 pages, 5 figures, under revie
    corecore