4,924 research outputs found

    Neutrino Trapping in a Supernova and Ion Screening

    Get PDF
    Neutrino-nucleus elastic scattering is reduced in dense matter because of correlations between ions. The static structure factor for a plasma of electrons and ions is calculated from Monte Carlo simulations and parameterized with a least squares fit. Our results imply a large increase in the neutrino mean free path. This strongly limits the trapping of neutrinos in a supernova by coherent neutral current interactions.Comment: 9 pages, 1 postscript figure using epsf.st

    Comments on Black Holes in Matrix Theory

    Get PDF
    The recent suggestion that the entropy of Schwarzschild black holes can be computed in matrix theory using near-extremal D-brane thermodynamics is examined. It is found that the regime in which this approach is valid actually describes black strings stretched across the longitudinal direction, near the transition where black strings become unstable to the formation of black holes. It is argued that the appropriate dynamics on the other (black hole) side of the transition is that of the zero modes of the corresponding super Yang-Mills theory. A suggestive mean field theory argument is given for the entropy of black holes in all dimensions. Consequences of the analysis for matrix theory and the holographic principle are discussed.Comment: 15 pages, harvmac, minor errors correcte

    Branes, AdS gravitons and Virasoro symmetry

    Get PDF
    We consider travelling waves propagating on the anti-de Sitter (AdS) background. It is pointed out that for any dimension d, this space of solutions has a Virasoro symmetry with a non-zero central charge. This result is a natural generalization to higher dimensions of the three-dimensional Brown-Henneaux symmetry.Comment: 4 pages REVTe

    Relativistic Treatment of Hypernuclear Decay

    Get PDF
    We compute for the first time the decay width of lambda-hypernuclei in a relativistic mean-field approximation to the Walecka model. Due to the small mass difference between the lambda-hyperon and its decay products---a nucleon and a pion---the mesonic component of the decay is strongly Pauli blocked in the nuclear medium. Thus, the in-medium decay becomes dominated by the non-mesonic, or two-body, component of the decay. For this mode, the lambda-hyperon decays into a nucleon and a spacelike nuclear excitation. In this work we concentrate exclusively on the pion-like modes. By relying on the analytic structure of the nucleon and pion propagators, we express the non-mesonic component of the decay in terms of the spin-longitudinal response function. This response has been constrained from precise quasielastic (p,n) measurements done at LAMPF. We compute the spin-longitudinal response in a relativistic random-phase-approximation model that reproduces accurately the quasielastic data. By doing so, we obtain hypernuclear decay widths that are considerably smaller---by factors of two or three---relative to existing nonrelativistic calculations.Comment: Revtex: 18 pages and 4 postscript figure

    The Value of Singularities

    Get PDF
    We point out that spacetime singularities play a useful role in gravitational theories by eliminating unphysical solutions. In particular, we argue that any modification of general relativity which is completely nonsingular cannot have a stable ground state. This argument applies both to classical extensions of general relativity, and to candidate quantum theories of gravity.Comment: 5 pages, no figures; a few clarifying comments adde

    Colliding Axion-Dilaton Plane Waves from Black Holes

    Get PDF
    The colliding plane wave metric discovered by Ferrari and Iba\~{n}ez to be locally isometric to the interior of a Schwarzschild black hole is extended to the case of general axion-dilaton black holes. Because the transformation maps either black hole horizon to the focal plane of the colliding waves, this entire class of colliding plane wave spacetimes only suffers from the formation of spacetime singularities in the limits where the inner horizon itself is singular, which occur in the Schwarzschild and dilaton black hole limits. The supersymmetric limit corresponding to the extreme axion-dilaton black hole yields the Bertotti-Robinson metric with the axion and dilaton fields flowing to fixed constant values. The maximal analytic extension of this metric across the Cauchy horizon yields a spacetime in which two sandwich waves in a cylindrical universe collide to produce a semi-infinite chain of Reissner-Nordstrom-like wormholes. The focussing of particle and string geodesics in this spacetime is explored.Comment: 19 pages, 6 figure

    Bubble divergences from cellular cohomology

    Full text link
    We consider a class of lattice topological field theories, among which are the weak-coupling limit of 2d Yang-Mills theory, the Ponzano-Regge model of 3d quantum gravity and discrete BF theory, whose dynamical variables are flat discrete connections with compact structure group on a cell 2-complex. In these models, it is known that the path integral measure is ill-defined in general, because of a phenomenon called `bubble divergences'. A common expectation is that the degree of these divergences is given by the number of `bubbles' of the 2-complex. In this note, we show that this expectation, although not realistic in general, is met in some special cases: when the 2-complex is simply connected, or when the structure group is Abelian -- in both cases, the divergence degree is given by the second Betti number of the 2-complex.Comment: 5 page
    • …
    corecore