42 research outputs found
Horizonless Rotating Solutions in -dimensional Einstein-Maxwell Gravity
We introduce two classes of rotating solutions of Einstein-Maxwell gravity in
dimensions which are asymptotically anti-de Sitter type. They have no
curvature singularity and no horizons. The first class of solutions, which has
a conic singularity yields a spacetime with a longitudinal magnetic field and
rotation parameters. We show that when one or more of the rotation
parameters are non zero, the spinning brane has a net electric charge that is
proportional to the magnitude of the rotation parameters. The second class of
solutions yields a spacetime with an angular magnetic field and
boost parameters. We find that the net electric charge of these traveling
branes with one or more nonzero boost parameters is proportional to the
magnitude of the velocity of the brane. We also use the counterterm method
inspired by AdS/CFT correspondence and calculate the conserved quantities of
the solutions. We show that the logarithmic divergencies associated to the Weyl
anomalies and matter field are zero, and the divergence of the action can
be removed by the counterterm method.Comment: 14 pages, references added, Sec. II amended, an appendix added. The
version to appear in Phys. Rev.
Magnetic Branes in Gauss-Bonnet Gravity
We present two new classes of magnetic brane solutions in
Einstein-Maxwell-Gauss-Bonnet gravity with a negative cosmological constant.
The first class of solutions yields an -dimensional spacetime with a
longitudinal magnetic field generated by a static magnetic brane. We also
generalize this solution to the case of spinning magnetic branes with one or
more rotation parameters. We find that these solutions have no curvature
singularity and no horizons, but have a conic geometry. In these spacetimes,
when all the rotation parameters are zero, the electric field vanishes, and
therefore the brane has no net electric charge. For the spinning brane, when
one or more rotation parameters are non zero, the brane has a net electric
charge which is proportional to the magnitude of the rotation parameter. The
second class of solutions yields a spacetime with an angular magnetic field.
These solutions have no curvature singularity, no horizon, and no conical
singularity. Again we find that the net electric charge of the branes in these
spacetimes is proportional to the magnitude of the velocity of the brane.
Finally, we use the counterterm method in the Gauss-Bonnet gravity and compute
the conserved quantities of these spacetimes.Comment: 17 pages, No figure, The version to be published in Phys. Rev.
Four-dimensional anti-de Sitter black holes from a three-dimensional perspective: Full complexity
The dimensional reduction of black hole solutions in four-dimensional (4D)
general relativity is performed and new 3D black hole solutions are obtained.
Considering a 4D spacetime with one spacelike Killing vector, it is possible to
split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of
3D quantities. Definitions of quasilocal mass and charges in 3D spacetimes are
reviewed. The analysis is then particularized to the toroidal charged rotating
anti-de Sitter black hole. The reinterpretation of the fields and charges in
terms of a three-dimensional point of view is given in each case, and the
causal structure analyzed.Comment: 26 pages, 1 figure, Uses revtex
Identification of drug candidates targeting monocyte reprogramming in people living with HIV
INTRODUCTION: People living with HIV (PLHIV) are characterized by functional reprogramming of innate immune cells even after long-term antiretroviral therapy (ART). In order to assess technical feasibility of omics technologies for application to larger cohorts, we compared multiple omics data layers. METHODS: Bulk and single-cell transcriptomics, flow cytometry, proteomics, chromatin landscape analysis by ATAC-seq as well as ex vivo drug stimulation were performed in a small number of blood samples derived from PLHIV and healthy controls from the 200-HIV cohort study. RESULTS: Single-cell RNA-seq analysis revealed that most immune cells in peripheral blood of PLHIV are altered in their transcriptomes and that a specific functional monocyte state previously described in acute HIV infection is still existing in PLHIV while other monocyte cell states are only occurring acute infection. Further, a reverse transcriptome approach on a rather small number of PLHIV was sufficient to identify drug candidates for reversing the transcriptional phenotype of monocytes in PLHIV. DISCUSSION: These scientific findings and technological advancements for clinical application of single-cell transcriptomics form the basis for the larger 2000-HIV multicenter cohort study on PLHIV, for which a combination of bulk and single-cell transcriptomics will be included as the leading technology to determine disease endotypes in PLHIV and to predict disease trajectories and outcomes
Recommended from our members
Energetic particle influence on the Earth's atmosphere
This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally
galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere
are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere
Determining pyhsiological reaction probabilities to noise events during sleep
ISSN:1432-9123ISSN:1439-054