161 research outputs found
Comparative study of density functional theories of the exchange-correlation hole and energy in silicon
We present a detailed study of the exchange-correlation hole and
exchange-correlation energy per particle in the Si crystal as calculated by the
Variational Monte Carlo method and predicted by various density functional
models. Nonlocal density averaging methods prove to be successful in correcting
severe errors in the local density approximation (LDA) at low densities where
the density changes dramatically over the correlation length of the LDA hole,
but fail to provide systematic improvements at higher densities where the
effects of density inhomogeneity are more subtle. Exchange and correlation
considered separately show a sensitivity to the nonlocal semiconductor crystal
environment, particularly within the Si bond, which is not predicted by the
nonlocal approaches based on density averaging. The exchange hole is well
described by a bonding orbital picture, while the correlation hole has a
significant component due to the polarization of the nearby bonds, which
partially screens out the anisotropy in the exchange hole.Comment: 16 pages, 5 figures, RevTeX, added conten
Optimization of inhomogeneous electron correlation factors in periodic solids
A method is presented for the optimization of one-body and inhomogeneous
two-body terms in correlated electronic wave functions of Jastrow-Slater type.
The most general form of inhomogeneous correlation term which is compatible
with crystal symmetry is used and the energy is minimized with respect to all
parameters using a rapidly convergent iterative approach, based on Monte Carlo
sampling of the energy and fitting energy fluctuations. The energy minimization
is performed exactly within statistical sampling error for the energy
derivatives and the resulting one- and two-body terms of the wave function are
found to be well-determined. The largest calculations performed require the
optimization of over 3000 parameters. The inhomogeneous two-electron
correlation terms are calculated for diamond and rhombohedral graphite. The
optimal terms in diamond are found to be approximately homogeneous and
isotropic over all ranges of electron separation, but exhibit some
inhomogeneity at short- and intermediate-range, whereas those in graphite are
found to be homogeneous at short-range, but inhomogeneous and anisotropic at
intermediate- and long-range electron separation.Comment: 23 pages, 15 figures, 1 table, REVTeX4, submitted to PR
Dynamic generation of maximally entangled photon multiplets by adiabatic passage
The adiabatic passage scheme for quantum state synthesis, in which atomic
Zeeman coherences are mapped to photon states in an optical cavity, is extended
to the general case of two degenerate cavity modes with orthogonal
polarization. Analytical calculations of the dressed-state structure and Monte
Carlo wave-function simulations of the system dynamics show that, for a
suitably chosen cavity detuning, it is possible to generate states of photon
multiplets that are maximally entangled in polarization. These states display
nonclassical correlations of the type described by Greenberger, Horne, and
Zeilinger (GHZ). An experimental scheme to realize a GHZ measurement using
coincidence detection of the photons escaping from the cavity is proposed. The
correlations are found to originate in the dynamics of the adiabatic passage
and persist even if cavity decay and GHZ state synthesis compete on the same
time scale. Beyond entangled field states, it is also possible to generate
entanglement between photons and the atom by using a different atomic
transition and initial Zeeman state.Comment: 22 pages (RevTeX), including 23 postscript figures. To be published
in Physical Review
Rotational master equation for cold laser-driven molecules
The equations of motion for the molecular rotation are derived for
vibrationally cold dimers that are polarized by off-resonant laser light. It is
shown that, by eliminating electronic and vibrational degrees of freedom, a
quantum master equation for the reduced rotational density operator can be
obtained. The coherent rotational dynamics is caused by stimulated Raman
transitions, whereas spontaneous Raman transitions lead to decoherence in the
motion of the quantized angular momentum. As an example the molecular dynamics
for the optical Kerr effect is chosen, revealing decoherence and heating of the
molecular rotation.Comment: 11 pages, 5 figures, to appear in Phys. Rev.
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2)
BACKGROUND:
Worldwide data for cancer survival are scarce. We aimed to initiate worldwide surveillance of cancer survival by central analysis of population-based registry data, as a metric of the effectiveness of health systems, and to inform global policy on cancer control.
METHODS:
Individual tumour records were submitted by 279 population-based cancer registries in 67 countries for 25·7 million adults (age 15-99 years) and 75,000 children (age 0-14 years) diagnosed with cancer during 1995-2009 and followed up to Dec 31, 2009, or later. We looked at cancers of the stomach, colon, rectum, liver, lung, breast (women), cervix, ovary, and prostate in adults, and adult and childhood leukaemia. Standardised quality control procedures were applied; errors were corrected by the registry concerned. We estimated 5-year net survival, adjusted for background mortality in every country or region by age (single year), sex, and calendar year, and by race or ethnic origin in some countries. Estimates were age-standardised with the International Cancer Survival Standard weights.
FINDINGS:
5-year survival from colon, rectal, and breast cancers has increased steadily in most developed countries. For patients diagnosed during 2005-09, survival for colon and rectal cancer reached 60% or more in 22 countries around the world; for breast cancer, 5-year survival rose to 85% or higher in 17 countries worldwide. Liver and lung cancer remain lethal in all nations: for both cancers, 5-year survival is below 20% everywhere in Europe, in the range 15-19% in North America, and as low as 7-9% in Mongolia and Thailand. Striking rises in 5-year survival from prostate cancer have occurred in many countries: survival rose by 10-20% between 1995-99 and 2005-09 in 22 countries in South America, Asia, and Europe, but survival still varies widely around the world, from less than 60% in Bulgaria and Thailand to 95% or more in Brazil, Puerto Rico, and the USA. For cervical cancer, national estimates of 5-year survival range from less than 50% to more than 70%; regional variations are much wider, and improvements between 1995-99 and 2005-09 have generally been slight. For women diagnosed with ovarian cancer in 2005-09, 5-year survival was 40% or higher only in Ecuador, the USA, and 17 countries in Asia and Europe. 5-year survival for stomach cancer in 2005-09 was high (54-58%) in Japan and South Korea, compared with less than 40% in other countries. By contrast, 5-year survival from adult leukaemia in Japan and South Korea (18-23%) is lower than in most other countries. 5-year survival from childhood acute lymphoblastic leukaemia is less than 60% in several countries, but as high as 90% in Canada and four European countries, which suggests major deficiencies in the management of a largely curable disease.
INTERPRETATION:
International comparison of survival trends reveals very wide differences that are likely to be attributable to differences in access to early diagnosis and optimum treatment. Continuous worldwide surveillance of cancer survival should become an indispensable source of information for cancer patients and researchers and a stimulus for politicians to improve health policy and health-care systems
The Origin, Early Evolution and Predictability of Solar Eruptions
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
Influência da heparina sódica na ocorrência de laminite eqüina induzida por sobrecarga de carboidratos
Laminite crônica em equídeos da raça Crioula: características clínicas e radiográficas
- …
