41,852 research outputs found
Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the C+Pb System at Near-Coulomb-Barrier Energies by using a Folding Potential
Simultaneous analyses are performed for elastic scattering and
fusion cross section data for the C+Pb system at
near-Coulomb-barrier energies by using the extended optical model approach in
which the polarization potential is decomposed into direct reaction (DR) and
fusion parts. Use is made of the double folding potential as a bare potential.
It is found that the experimental elastic scattering and fusion data are well
reproduced without introducing any normalization factor for the double folding
potential and also that both DR and fusion parts of the polarization potential
determined from the analyses satisfy separately the dispersion
relation. Furthermore, it is shown that the imaginary parts of both DR and
fusion potentials at the strong absorption radius change very rapidly, which
results in a typical threshold anomaly in the total imaginary potential as
observed with tightly bound projectiles such as -particle and O.Comment: 26 pages, 7 figures, submitted to Physical Review
Recommended from our members
State-of-the-art on research and applications of machine learning in the building life cycle
Fueled by big data, powerful and affordable computing resources, and advanced algorithms, machine learning has been explored and applied to buildings research for the past decades and has demonstrated its potential to enhance building performance. This study systematically surveyed how machine learning has been applied at different stages of building life cycle. By conducting a literature search on the Web of Knowledge platform, we found 9579 papers in this field and selected 153 papers for an in-depth review. The number of published papers is increasing year by year, with a focus on building design, operation, and control. However, no study was found using machine learning in building commissioning. There are successful pilot studies on fault detection and diagnosis of HVAC equipment and systems, load prediction, energy baseline estimate, load shape clustering, occupancy prediction, and learning occupant behaviors and energy use patterns. None of the existing studies were adopted broadly by the building industry, due to common challenges including (1) lack of large scale labeled data to train and validate the model, (2) lack of model transferability, which limits a model trained with one data-rich building to be used in another building with limited data, (3) lack of strong justification of costs and benefits of deploying machine learning, and (4) the performance might not be reliable and robust for the stated goals, as the method might work for some buildings but could not be generalized to others. Findings from the study can inform future machine learning research to improve occupant comfort, energy efficiency, demand flexibility, and resilience of buildings, as well as to inspire young researchers in the field to explore multidisciplinary approaches that integrate building science, computing science, data science, and social science
Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 7Li+208Pb System at Near-Coulomb-Barrier Energies using the Folding Potential
Simultaneous analyses previously made for elastic scattering and
fusion cross section data for the Li+Pb system is extended to the
Li+Pb system at near-Coulomb-barrier energies based on the
extended optical model approach, in which the polarization potential is
decomposed into direct reaction (DR) and fusion parts. Use is made of the
double folding potential as a bare potential. It is found that the experimental
elastic scattering and fusion data are well reproduced without introducing any
normalization factor for the double folding potential and that both the DR and
fusion parts of the polarization potential determined from the
analyses satisfy separately the dispersion relation. Further, we find that the
real part of the fusion portion of the polarization potential is attractive
while that of the DR part is repulsive except at energies far below the Coulomb
barrier energy. A comparison is made of the present results with those obtained
from the Continuum Discretized Coupled Channel (CDCC) calculations and a
previous study based on the conventional optical model with a double folding
potential. We also compare the present results for the Li+Pb system
with the analysis previously made for the Li+Pb system.Comment: 7 figures, submitted to PR
The GEMS Approach to Stationary Motions in the Spherically Symmetric Spacetimes
We generalize the work of Deser and Levin on the unified description of
Hawking radiation and Unruh effect to general stationary motions in spherically
symmetric black holes. We have also matched the chemical potential term of the
thermal spectrum of the two sides for uncharged black holes.Comment: Latex file, 12 pages, no figure; v2: typos fixed; v3: minor
corrections, final version published in JHE
Visualizing urban microclimate and quantifying its impact on building energy use in San Francisco
Weather data at nearby airports are usually used in building energy simulation to estimate energy use in buildings or evaluate building design or retrofit options. However, due to urbanization and geography characteristics, local weather conditions can differ significantly from those at airports. This study presents the visualization of 10-year hourly weather data measured at 27 sites in San Francisco, aiming to provide insights into the urban microclimate and urban heat island effect in San Francisco and how they evolve during the recent decade. The 10-year weather data are used in building energy simulations to investigate its influence on energy use and electrical peak demand, which informs the city's policy making on building energy efficiency and resilience. The visualization feature is implemented in CityBES, an open web-based data and computing platform for urban building energy research
model with Hopf term and fractional spin statistics
We reconsider the model with the Hopf term by using the
Batalin-Fradkin-Tyutin (BFT) scheme, which is an improved version of the Dirac
quantization method. We also perform a semi-classical quantization of the
topological charge Q sector by exploiting the collective coordinates to
explicitly show the fractional spin statistics.Comment: 15 page
Flavor symmetry breaking effects on SU(3) Skyrmion
We study the massive SU(3) Skyrmion model to investigate the flavor symmetry
breaking (FSB) effects on the static properties of the strange baryons in the
framework of the rigid rotator quantization scheme combined with the improved
Dirac quantization one. Both the chiral symmetry breaking pion mass and FSB
kinetic terms are shown to improve the ratio of the strange-light to
light-light interaction strengths and that of the strange-strange to
light-light.Comment: 12 pages, latex, no figure
Heavy-tailed statistics in short-message communication
Short-message (SM) is one of the most frequently used communication channels
in the modern society. In this Brief Report, based on the SM communication
records provided by some volunteers, we investigate the statistics of SM
communication pattern, including the interevent time distributions between two
consecutive short messages and two conversations, and the distribution of
message number contained by a complete conversation. In the individual level,
the current empirical data raises a strong evidence that the human activity
pattern, exhibiting a heavy-tailed interevent time distribution, is driven by a
non-Poisson nature.Comment: 4 pages, 4 figures and 1 tabl
- …