667 research outputs found
Covariant hamiltonian dynamics
We discuss the covariant formulation of the dynamics of particles with
abelian and non-abelian gauge charges in external fields. Using this
formulation we develop an algorithm for the construction of constants of
motion, which makes use of a generalization of the concept of Killing vectors
and tensors in differential geometry. We apply the formalism to the motion of
classical charges in abelian and non-abelian monopole fieldsComment: 15 pages, no figure
Scalability considerations for multivariate graph visualization
Real-world, multivariate datasets are frequently too large to show in their entirety on a visual display. Still, there are many techniques we can employ to show useful partial views-sufficient to support incremental exploration of large graph datasets. In this chapter, we first explore the cognitive and architectural limitations which restrict the amount of visual bandwidth available to multivariate graph visualization approaches. These limitations afford several design approaches, which we systematically explore. Finally, we survey systems and studies that exhibit these design strategies to mitigate these perceptual and architectural limitations
CHEMICALLY MODIFIED PHOTOSYNTHETIC BACTERIAL REACTION CENTERS: CIRCULAR DICHROISM, RAMAN RESONANCE, LOW TEMPERATURE ABSORPTION, FLUORESCENCE AND ODMR SPECTRA AND POLYPEPTIDE COMPOSITION OF BOROHYDRIDE TREATED REACTION CENTERS FROM Rhodobacter sphaeroides R26
Reaction centers from Rhodobacter sphaeroides have been modified by treatment with sodium borohydride similar to the original procedure [Ditson et al., Biochim. Biophys. Acta 766, 623 (1984)], and investigated spectroscopically and by gel electrophoresis.
(1) Low temperature (1.2 K) absorption, fluorescence, absorption- and fluorescence-detected ODMR, and microwave-induced singlet-triplet absorption difference spectra (MIA) suggest that the treatment produces a spectroscopically homogeneous preparation with one of the ‘additional’ bacteriochlorophylls being removed. The modification does not alter the zero field splitting parameters of the primary donor triplet (TP870).
(2) From the circular dichroism and Raman resonance spectra in the1500–1800 cm-1 region, the removed pigment is assigned to BchlM, e.g. the "extra" Bchl on the "inactive" M-branch.
(3) A strong coupling among all pigment molecules is deduced from the circular dichroism spectra, because pronounced band-shifts and/or intensity changes occur in the spectral components assigned to all pigments. This is supported by distinct differences among the MIA spectra of untreated and modified reaction centers, as well as by Raman resonance.
(4) The modification is accompanied by partial proteolytic cleavage of the M-subunit. The preparation is thus spectroscopically homogeneous, but biochemically heterogenous
Quantum Mechanics of Yano tensors: Dirac equation in curved spacetime
In spacetimes admitting Yano tensors the classical theory of the spinning
particle possesses enhanced worldline supersymmetry. Quantum mechanically
generators of extra supersymmetries correspond to operators that in the
classical limit commute with the Dirac operator and generate conserved
quantities. We show that the result is preserved in the full quantum theory,
that is, Yano symmetries are not anomalous. This was known for Yano tensors of
rank two, but our main result is to show that it extends to Yano tensors of
arbitrary rank. We also describe the conformal Yano equation and show that is
invariant under Hodge duality. There is a natural relationship between Yano
tensors and supergravity theories. As the simplest possible example, we show
that when the spacetime admits a Killing spinor then this generates Yano and
conformal Yano tensors. As an application, we construct Yano tensors on
maximally symmetric spaces: they are spanned by tensor products of Killing
vectors.Comment: 1+32 pages, no figures. Accepted for publication on Classical and
Quantum Gravity. New title and abstract. Some material has been moved to the
Appendix. Concrete formulas for Yano tensors on some special holonomy
manifolds have been provided. Some corrections included, bibliography
enlarge
Augmented Superfield Approach To Unique Nilpotent Symmetries For Complex Scalar Fields In QED
The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin
(BRST)- and anti-BRST symmetries for the matter fields, present in any
arbitrary interacting gauge theory, has been a long-standing problem in the
framework of superfield approach to BRST formalism. These nilpotent symmetry
transformations are deduced for the four (3 + 1)-dimensional (4D) complex
scalar fields, coupled to the U(1) gauge field, in the framework of augmented
superfield formalism. This interacting gauge theory (i.e. QED) is considered on
a six (4, 2)-dimensional supermanifold parametrized by four even spacetime
coordinates and a couple of odd elements of the Grassmann algebra. In addition
to the horizontality condition (that is responsible for the derivation of the
exact nilpotent symmetries for the gauge field and the (anti-)ghost fields), a
new restriction on the supermanifold, owing its origin to the (super) covariant
derivatives, has been invoked for the derivation of the exact nilpotent
symmetry transformations for the matter fields. The geometrical interpretations
for all the above nilpotent symmetries are discussed, too.Comment: LaTeX file, 17 pages, journal versio
The implications of noninertial motion on covariant quantum spin
It is shown that the Pauli-Lubanski spin vector defined in terms of
curvilinear co-ordinates does not satisfy Lorentz invariance for spin-1/2
particles in noninertial motion along a curved trajectory. The possibility of
detecting this violation in muon decay experiments is explored, where the
noninertial contribution to the decay rate becomes large for muon beams with
large momenta and trajectories with radius of curvature approaching the muon's
Compton wavelength scale. A new spacelike spin vector is derived from the
Pauli-Lubanski vector that satisfies Lorentz invariance for both inertial and
noninertial motion. In addition, this spin vector suggests a generalization for
the classification of spin-1/2 particles, and has interesting properties that
are applicable for both massive and massless particles.Comment: REVTeX file; 7 pages; 2 figures; slightly revised with new abstract;
accepted for publication in Classical and Quantum Gravit
REACTIVITY OF CHLOROPHYLL a/b-PROTEINS AND MICELLAR TRITON X-100 COMPLEXES OF CHLOROPHYLLS a OR b WITH BOROHYDRIDE
The reaction of several plant chlorophyll-protein complexes with NaBH4 has been studied by absorption spectroscopy. In all the complexes studied, chlorophyll b is more reactive than Chi a, due to preferential reaction of its formyl substituent at C-7. The complexes also show large variations in reactivity towards NaBH4 and the order of reactivity is: LHCI > PSII complex > LHCII > PSI > P700 (investigated as a component of PSI). Differential pools of the same type of chlorophyll have been observed in several complexes.
Parallel work was undertaken on the reactivity of micellar complexes of chlorophyll a and of chlorophyll b with NaBH4 to study the effect of aggregation state on this reactivity. In these complexes, both chlorophyll a and b show large variations in reactivity in the order monomer > oligomer > polymer with chlorophyll b generally being more reactive than chlorophyll a. It is concluded that aggregation decreases the reactivity of chlorophylls towards NaBH4 in vitro, and may similarly decrease reactivity in naturally-occurring chlorophyll-protein complexes
Anomaly-Free Supersymmetric SO(2N+2)/U(N+1) sigma-Model Based on the SO(2N+1) Lie Algebra of the Fermion Operators
The extended supersymmetric (SUSY) sigma-model has been proposed on the bases
of SO(2N+1) Lie algebra spanned by fermion annihilation-creation operators and
pair operators. The canonical transformation, extension of an SO(2N) Bogoliubov
transformation to an SO(2N+1) group, is introduced. Embedding the SO(2N+1)
group into an SO(2N+2) group and using SO(2N+2)/U(N+1) coset variables, we have
investigated the SUSY sigma-model on the Kaehler manifold, the coset space
SO(2N+2)/U(N+1). We have constructed the Killing potential, extension of the
potential in the SO(2N)/U(N) coset space to that in the SO(2N+2)/U(N+1) coset
space. It is equivalent to the generalized density matrix whose diagonal-block
part is related to a reduced scalar potential with a Fayet-Ilipoulos term. The
f-deformed reduced scalar potential is optimized with respect to vacuum
expectation value of the sigma-model fields and a solution for one of the
SO(2N+1) group parameters has been obtained. The solution, however, is only a
small part of all solutions obtained from anomaly-free SUSY coset models. To
construct the coset models consistently, we must embed a coset coordinate in an
anomaly-free spinor representation (rep) of SO(2N+2) group and give
corresponding Kaehler and Killing potentials for an anomaly-free
SO(2N+2)/U(N+1) model based on each positive chiral spinor rep. Using such
mathematical manipulation we construct successfully the anomaly-free
SO(2N+2)/U(N+1) SUSY sigma-model and investigate new aspects which have never
been seen in the SUSY sigma-model on the Kaehler coset space SO(2N)/U(N). We
reach a f-deformed reduced scalar potential. It is minimized with respect to
the vacuum expectation value of anomaly-free SUSY sigma-model fields. Thus we
find an interesting f-deformed solution very different from the previous
solution for an anomaly-free SO(2.5+2)/(SU(5+1)*U(1)) SUSY sigma-model.Comment: 24 pages, no fiure
On the maximal superalgebras of supersymmetric backgrounds
In this note we give a precise definition of the notion of a maximal
superalgebra of certain types of supersymmetric supergravity backgrounds,
including the Freund-Rubin backgrounds, and propose a geometric construction
extending the well-known construction of its Killing superalgebra. We determine
the structure of maximal Lie superalgebras and show that there is a finite
number of isomorphism classes, all related via contractions from an
orthosymplectic Lie superalgebra. We use the structure theory to show that
maximally supersymmetric waves do not possess such a maximal superalgebra, but
that the maximally supersymmetric Freund-Rubin backgrounds do. We perform the
explicit geometric construction of the maximal superalgebra of AdS_4 x S^7 and
find that is isomorphic to osp(1|32). We propose an algebraic construction of
the maximal superalgebra of any background asymptotic to AdS_4 x S^7 and we
test this proposal by computing the maximal superalgebra of the M2-brane in its
two maximally supersymmetric limits, finding agreement.Comment: 17 page
- …