15,012 research outputs found

    Nuclear pairing from microscopic forces: singlet channels and higher-partial waves

    Full text link
    Background: An accurate description of nuclear pairing gaps is extremely important for understanding static and dynamic properties of the inner crusts of neutron stars and to explain their cooling process. Purpose: We plan to study the behavior of the pairing gaps ΔF\Delta_F as a function of the Fermi momentum kFk_F for neutron and nuclear matter in all relevant angular momentum channels where superfluidity is believed to naturally emerge. The calculations will employ realistic chiral nucleon-nucleon potentials with the inclusion of three-body forces and self-energy effects. Methods: The superfluid states of neutron and nuclear matter are studied by solving the BCS gap equation for chiral nuclear potentials using the method suggested by Khodel et al., where the original gap equation is replaced by a coupled set of equations for the dimensionless gap function χ(p)\chi(p) defined by Δ(p)=ΔFχ(p)\Delta(p) = \Delta_F \chi(p) and a non-linear algebraic equation for the gap magnitude ΔF=Δ(pF)\Delta_F = \Delta(p_F) at the Fermi surface. This method is numerically stable even for small pairing gaps, such as that encountered in the coupled 3PF2^3PF_2 partial wave. Results: We have successfully applied Khodel's method to singlet (SS) and coupled channel (SDSD and PFPF) cases in neutron and nuclear matter. Our calculations agree with other ab-initio approaches, where available, and provide crucial inputs for future applications in superfluid systems.Comment: 18 pages and 9 figure

    A wind tunnel investigation into the effects of roof curvature on the aerodynamic drag experienced by a light goods vehicle

    Get PDF
    Roof curvature is used to increase ground vehicle camber and enhance rear-body boat-tailing to reduce aerodynamic drag. Little aerodynamic data is published for light goods vehicles (LGVs) which account for a significant proportion of annual UK licensed vehicle miles. This paper details scale wind tunnel measurements at Re = 1.6 × 106 of a generic LGV utilising interchangeable roof panels to investigate the effects of curved roof profile on aerodynamic drag at simulated crosswinds between -6° and 16°. Optimum magnitudes of roof profile depth and axial location are suggested and the limited dataset indicates that increasing roof curvature is effective in reducing drag over a large yaw range, compared to a flat roof profile. This is primarily due to increased base pressure, possibly from enhanced mixing of longitudinal vortices shed from the rear-body upper side edges and increased turbulent mixing in the near-wake due to the increased effective boat-tail angle

    A Comparison of Electrical Breakdown Characteristics of Composite Materials Prepared With Unmodified Micro and Nano Scale Barium Titanate

    No full text
    High permittivity polymer matrix composites (PMCs) have been widely researched, especially in the field of microelectronics. For this study, high permittivity materials were investigated for their potential to form part of a multi-layer electric field detector. The two main requirements for such composites were high permittivity and a dielectric strength comparable to most standard polymers used as dielectric materials. Polystyrene was selected as a host polymer due to its high dielectric strength and amorphous structure. Barium titanate, a ferroelectric ceramic from the perovskite family, was selected as a high permittivity filler. Polymer permittivity in PMCs is usually orders of magnitude lower compared to the filler permittivity, although the resultant permittivity of the composite is generally markedly lower than the permittivity of the filler may suggest. This is because very little energy is stored in the ceramic filler, such that any increase in composite permittivity is due to an increase in the average field with the polymer matrix.[1]Micro and nano scale barium titanate was blended into polystyrene in an effort to discern the initial differences between composites prepared with the two different filler types. It was found that the micro scale barium titanate was well dispersed and from studying SEM micrographs, appeared to have a good particle size distribution. The nanoscale barium titanate was found to be very poorly dispersed in polystyrene, with a wide particle size distributions formed of weakly bound aggregations and some seemingly chemically bonded agglomerations which were regular in shape with a surface texture which was indicative of tightly bound primary particles. Consistent with the differences in particle dispersion within the micro and nano composites, there was a marked difference in AC breakdown strength between the different materials. All electrical breakdown data was analysed using a 2 parameter Weibull distribution. Figure 1 compares the ? values for the micro and nano composites at different filler loadings.<br/

    Iron line emission from X-ray sources

    Get PDF
    Iron line emission from X ray source

    X-ray spectra of Hercules X-1. 2: Intrinsic beam

    Get PDF
    The X-ray spectrum of Hercules X-1 was observed in the energy range 2-24 keV with sufficient temporal resolution to allow detailed study of spectral correlations with the 1.24 sec pulse phase. A region of spectral hardening which extends over approximately the 1/10 pulse phase may be associated with the underlying beam. The pulse shape stability and its asymmetry relative to this intrinsic beam are discussed

    A change in the X-ray spectrum of MK 421

    Get PDF
    HEAO-1 experiment A-2 observations of the BL Lac object MK421 in May 1978 show a marked spectral change from the OSO-8 observations of May 1977. The source was not detected above 10 keV in May 1978. The 2-10 keV spectrum could be well fit by a power law of energy slope 2.2 is less than or minus 4.2; thermal bremsstrahlung models with T less than 2 X 10 to the 7th power deg K are also acceptable. There was no indication of any low energy turnover, so that the inferred column density N sub H is less than 7 X 10 to the 21st power at/sq cm. The total flux is consistent with an extrapolation of the UV data from IUE, but the slope is not consistent with the UV slope. Possible models for the origin of the spectral transition are discussed

    Millisecond temporal structure in Cyg X-1

    Get PDF
    Evidence is presented for the X-ray variability of Cyg X-1 on time scales down to a millisecond. Several bursts of millisecond duration are observed. The duty cycle for bursting is estimated to be approximately greater than. 0002 averaged over the entire 49. second exposure, although the maximum burst activity is associated with a region of enhanced emission lasting about 1/3 second. Such bursts may be associated with turbulence in disk accretion at the innermost orbits for a black hole

    Long-term studies with the Ariel 5 ASM. 2: The strong Cygnus sources

    Get PDF
    The three bright 3-6 keV X-ray sources in Cygnus are examined for regular temporal variability with a 1300-day record from the Ariel 5 All Sky Monitor. The only periods consistently observed are 5.6 days for Cyg X-1, 11.23 days for Cyg X-2, and 4.8 hours for Cyg X-3

    What is special about Cygnus X-1?

    Get PDF
    The X-ray evidence from several experiments is reviewed, with special emphasis on those characteristics which appear to distinguish Cygnus X-1 from other compact X-ray emitting objects. Data are examined within the context of a model in which millisecond bursts are superposed upon shot-noise fluctuations arising from events of durations on the order of a second. Possible spectral-temporal correlations are investigated which provide additional evidence that Cygnus X-1 is very likely a black hole
    • …
    corecore