2,519 research outputs found
Changes in Muscles and Tendons Due to Neural Motor Disorders: Implications for Therapeutic Intervention
Patients with an upper motor neurone syndrome (CP) suffer from many disabling primary symptoms: spasms, weakness, and loss of dexterity. These primary âneurogenicâ symptoms often lead to secondary disabilities, muscle contractures, and tertiary effects, bone deformations. A common symptom of CP is hypertonia, with. the consequence that the involved muscles remain in an excessively shortened length for most of the time. As a normal reaction of the muscle tissue, the number of sarcomeres is reduced and the muscle fibers shorten permanently: a contracture develops. A possible second type of contracture is that normal muscle lengthening along with bone growth is affected. Current treatments for the secondary effects include (1) reduction of muscle force, (2)lengthening of the muscle fibers by serial plaster casts, and (3)surgical lengthening of tendons or aponeurosis. The choice of treatment depends on the cause of the functional deficit. Bone tissue also adapts itself to abnormal forces, especially in the growth period. The hypertonias or contractures of CP so may give rise to bone malformations that interfere with function (e.g. femur endorotation) or may reduce the action of muscles by changing the lever arm (e.g. ankle varus). Although prevention should always be preferred, a timely surgical intervention cannot always be avoided. The differences in treatment for the various groups require and justify an extensive laboratory investigation, including EMG recordings in gait, measurement of passive elastic properties, and long-term observation of the hypertonia
Rapid and MR-Independent IK1 activation by aldosterone during ischemia-reperfusion
In ST elevation myocardial infarction (STEMI) context, clinical studies have shown the deleterious
effect of high aldosterone levels on ventricular arrhythmia occurrence and cardiac
mortality. Previous in vitro reports showed that during ischemia-reperfusion, aldosterone
modulates K+ currents involved in the holding of the resting membrane potential (RMP).
The aim of this study was to assess the electrophysiological impact of aldosterone on IK1
current during myocardial ischemia-reperfusion. We used an in vitro model of âborder zoneâ
using right rabbit ventricle and standard microelectrode technique followed by cell-attached
recordings from freshly isolated rabbit ventricular cardiomyocytes. In microelectrode experiments,
aldosterone (10 and 100 nmol/L, n=7 respectively) increased the action potential
duration (APD) dispersion at 90% between ischemic and normoxic zones (from 95±4ms to
116±6 ms and 127±5 ms respectively, P<0.05) and reperfusion-induced sustained premature
ventricular contractions occurrence (from 2/12 to 5/7 preparations, P<0.05). Conversely,
potassium canrenoate 100 nmol/L and RU 28318 1 ÎŒmol/l alone did not affect AP
parameters and premature ventricular contractions occurrence (except Vmax which was
decreased by potassium canrenoate during simulated-ischemia). Furthermore, aldosterone
induced a RMP hyperpolarization, evoking an implication of a K+ current involved in the
holding of the RMP. Cell-attached recordings showed that aldosterone 10 nmol/L quickly
activated (within 6.2±0.4 min) a 30 pS K+-selective current, inward rectifier, with pharmacological
and biophysical properties consistent with the IK1 current (NPo =1.9±0.4 in control vs
NPo=3.0±0.4, n=10, P<0.05). These deleterious effects persisted in presence of RU 28318,
a specific MR antagonist, and were successfully prevented by potassium canrenoate, a non
specific MR antagonist, in both microelectrode and patch-clamp recordings, thus indicating
a MR-independent IK1 activation. In this ischemia-reperfusion context, aldosterone induced
rapid and MR-independent deleterious effects including an arrhythmia substrate (increased
APD90 dispersion) and triggered activities (increased premature ventricular contractions
occurrence on reperfusion) possibly related to direct IK1 activation
Open source software for semi-automated histomorphometry of bone resorption and formation parameters
Micro-CT analysis has become the standard method for assessing bone volume and architecture in small animals. However, micro-CT does not allow the assessment of bone turnover parameters such as bone formation rate and osteoclast (OC) number and surface. For these crucial variables histomorphometric analysis is still an essential technique. Histomorphometry however, is time consuming and, especially in mouse bones, OCs can be difficult to detect. The main purpose of this study was to develop and validate a relatively easy and rapid method to measure static and dynamic bone histomorphometry parameters. Here we present the adaptation of established staining protocols and three novel open source image analysis packages: TrapHisto, OsteoidHisto and CalceinHisto that allow rapid, semi-automated analysis of histomorphometric bone resorption, osteoid, and calcein double labelling parameters respectively. These three programs are based on ImageJ, but use a relatively simple user interface that hides the underlying complexity of the image analysis
Tilings, tiling spaces and topology
To understand an aperiodic tiling (or a quasicrystal modeled on an aperiodic
tiling), we construct a space of similar tilings, on which the group of
translations acts naturally. This space is then an (abstract) dynamical system.
Dynamical properties of the space (such as mixing, or the spectrum of the
translation operator) are closely related to bulk properties of the individual
tilings (such as the diffraction pattern). The topology of the space of
tilings, particularly the Cech cohomology, gives information on how the
original tiling can be deformed. Tiling spaces can be constructed as inverse
limits of branched manifolds.Comment: 8 pages, including 2 figures, talk given at ICQ
Diffractive point sets with entropy
After a brief historical survey, the paper introduces the notion of entropic
model sets (cut and project sets), and, more generally, the notion of
diffractive point sets with entropy. Such sets may be thought of as
generalizations of lattice gases. We show that taking the site occupation of a
model set stochastically results, with probabilistic certainty, in well-defined
diffractive properties augmented by a constant diffuse background. We discuss
both the case of independent, but identically distributed (i.i.d.) random
variables and that of independent, but different (i.e., site dependent) random
variables. Several examples are shown.Comment: 25 pages; dedicated to Hans-Ude Nissen on the occasion of his 65th
birthday; final version, some minor addition
Palindromic complexity of trees
We consider finite trees with edges labeled by letters on a finite alphabet
. Each pair of nodes defines a unique labeled path whose trace is a
word of the free monoid . The set of all such words defines the
language of the tree. In this paper, we investigate the palindromic complexity
of trees and provide hints for an upper bound on the number of distinct
palindromes in the language of a tree.Comment: Submitted to the conference DLT201
Random fields on model sets with localized dependency and their diffraction
For a random field on a general discrete set, we introduce a condition that
the range of the correlation from each site is within a predefined compact set
D. For such a random field omega defined on the model set Lambda that satisfies
a natural geometric condition, we develop a method to calculate the diffraction
measure of the random field. The method partitions the random field into a
finite number of random fields, each being independent and admitting the law of
large numbers. The diffraction measure of omega consists almost surely of a
pure-point component and an absolutely continuous component. The former is the
diffraction measure of the expectation E[omega], while the inverse Fourier
transform of the absolutely continuous component of omega turns out to be a
weighted Dirac comb which satisfies a simple formula. Moreover, the pure-point
component will be understood quantitatively in a simple exact formula if the
weights are continuous over the internal space of Lambda Then we provide a
sufficient condition that the diffraction measure of a random field on a model
set is still pure-point.Comment: 21 page
Repetitions in beta-integers
Classical crystals are solid materials containing arbitrarily long periodic
repetitions of a single motif. In this paper, we study the maximal possible
repetition of the same motif occurring in beta-integers -- one dimensional
models of quasicrystals. We are interested in beta-integers realizing only a
finite number of distinct distances between neighboring elements. In such a
case, the problem may be reformulated in terms of combinatorics on words as a
study of the index of infinite words coding beta-integers. We will solve a
particular case for beta being a quadratic non-simple Parry number.Comment: 11 page
Recurrence in 2D Inviscid Channel Flow
I will prove a recurrence theorem which says that any () solution
to the 2D inviscid channel flow returns repeatedly to an arbitrarily small
neighborhood. Periodic boundary condition is imposed along the
stream-wise direction. The result is an extension of an early result of the
author [Li, 09] on 2D Euler equation under periodic boundary conditions along
both directions
Use of 3D printed connectors to redesign full face snorkeling masks in the COVID-19 era: a preliminary technical case-study
The COVID-19 pandemic resulted in severe shortages of personal protection equipment and non-invasive ventilation devices. As traditional supply chains could not meet up with the demand, makeshift solutions were developed and locally manufactured by rapid prototyping networks. Among the different global initiatives, retrofitting of full-face snorkeling masks for Non-Invasive-Ventilation (NIV) applications seems the most challenging. This article provides a systematic overview of rapid prototyped - 3D printed - designs that enable attachment of medical equipment to snorkeling masks, highlighting potential and challenges in additive manufacturing. The different NIV connector designs are compared on low-cost 3D fabrication time and costs, which allows a rapid assessment of developed connectors for health care workers in urgent need of retrofitting snorkeling masks for NIV purposes. Challenges and safety issues of the rapid prototyping approach for healthcare applications during the pandemic are discussed as well. When critical parameters such as the final product cost, geographical availability of the feedstock and the 3D printers and the medical efficiency of the rapid prototyped products are well considered before deploying decentralized 3D printing as manufacturing method, this rapid prototyping strategy contributed to reduce personal protective equipment and NIV shortages during the first wave of the COVID-19 pandemic. It is also concluded that it is crucial to carefully optimize material and printer parameter settings to realize best fitting and airtight connector-mask connections, which is heavily depending on the chosen feedstock and type of printer
- âŠ