1,369 research outputs found
Resonant diaphragm pressure measurement system with ZnO on Si excitation
The principle of measuring pressure by means of a resonant diaphragm has been studied. An oscillator consisting of an integrated amplifier with a piezoelectrically driven diaphragm in its feedback loop has been built. The oscillator frequency is accurately proportional to the square of the pressure in the range of 60 to 130 Torr.\ud
The frequency range is 1324 to 1336 Hz (this range being limited by a spurious mode which could be suppressed by better processing) for a 25 mm diameter diaphragm made of a silicon wafer and with PZT ceramics as driver and receptor. We have made an integrated version (1 × 1 mm2) of a square resonant diaphragm pressure guage by selective etching of (1 0 0) planes with ethylenediamine. The piezoelectric driving materials was sputtered zinc oxide. A driver was deposited midway between the bending point and the point of greatest curvature.\ud
A receptor was located at a symmetrical position to give a optimum transfer condition.\ud
The integrated current amplifier had a low impedance differential input stage, two gain cells and a high impedance output stage. These electrical conditions ensured maximum elastic freedom of the diaphragm. A digital circuit in I2L technology has been designed and made with eight-bit parallel read out of the frequency. This circuit may be directly connected to a microprocessor. The whole system contains the sensor chip, the analog amplifier chip and the digital chip, all in compatible technology.\ud
\u
Identification of SNPs Associated with Variola Virus Virulence
Background: Decades after the eradication of smallpox, its etiological agent, variola virus (VARV), remains a threat as a potential bioweapon. Outbreaks of smallpox around the time of the global eradication effort exhibited variable case fatality rates (CFRs), likely attributable in part to complex viral genetic determinants of smallpox virulence. We aimed to identify genome-wide single nucleotide polymorphisms associated with CFR. We evaluated unadjusted and outbreak geographic location-adjusted models of single SNPs and two- and three-way interactions between SNPs. Findings: Using the data mining approach multifactor dimensionality reduction (MDR), we identified five VARV SNPs in models significantly associated with CFR. The topper forming unadjusted model and adjusted models both revealed the same two-way gene-gene interaction. We discuss the biological plausibility of the influence of the SNPs identified these and other significant models on the strain-specific virulence of VARV. Conclusions: We have identified genetic loci in the VARV genome that are statistically associated with VARV virulence as measured by CFR. While our ability to infer a causal relationship between the specific SNPs identified in our analysis and VARV virulence is limited, our results suggest that smallpox severity is in part associated with VARV strain variation and that VARV virulence may be determined by multiple genetic loci. This study represents the first application of MDR to the identification of pathogen gene-gene interactions for predicting infectious disease outbreak severity
Extracellular Vesicles:Novel Opportunities to Understand and Detect Neoplastic Diseases
With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies
Characteristics of US public schools with reported cases of novel influenza A (H1N1)
Objective
The 2009 pandemic of influenza A (H1N1) has disproportionately affected children and young adults, resulting in attention by public health officials and the news media on schools as important settings for disease transmission and spread. We aimed to characterize US schools affected by novel influenza A (H1N1) relative to other schools in the same communities.
Methods
A database of US school-related cases was obtained by electronic news media monitoring for early reports of novel H1N1 influenza between April 23 and June 8, 2009. We performed a matched case–control study of 32 public primary and secondary schools that had one or more confirmed cases of H1N1 influenza and 6815 control schools located in the same 23 counties as case schools.
Results
Compared with controls from the same county, schools with reports of confirmed cases of H1N1 influenza were less likely to have a high proportion of economically disadvantaged students (adjusted odds ratio (aOR) 0.385; 95% confidence interval (CI) 0.166–0.894) and less likely to have older students (aOR 0.792; 95% CI 0.670–0.938).
Conclusions
We conclude that public schools with younger, more affluent students may be considered sentinels of the epidemic and may have played a role in its initial spread.National Institute of Allergy and Infectious Diseases (U.S.) (R21AI073591-01)National Institutes of Health (U.S.)Canadian Institutes of Health Research (PAN-83152)Canadian Institutes of Health Research (CAT-86857)Google (Firm) (Research Grant
Пленум Наукової ради«Українська мова» Українська лексикографія та лексикологія: проблеми, завдання
10–11 листопада 2011року у Ніжинському державному університеты імені Миколи Гоголя відбувся Пленум Наукової ради “Українська мова” Інституту української мови НАН України на тему “Українська лексикографія та лексикологія: проблеми, завдання”
Drug repurposing for rare:progress and opportunities for the rare disease community
Repurposing is one of the key opportunities to address the unmet rare diseases therapeutic need. Based on cases of drug repurposing in small population conditions, and previous work in drug repurposing, we analyzed the most important lessons learned, such as the sharing of clinical observations, reaching out to regulatory scientific advice at an early stage, and public-private collaboration. In addition, current upcoming trends in the field of drug repurposing in rare diseases were analyzed, including the role these trends could play in the rare diseases’ ecosystem. Specifically, we cover the opportunities of innovation platforms, the use of real-world data, the use of artificial intelligence, regulatory initiatives in repurposing, and patient engagement throughout the repurposing project. The outcomes from these emerging activities will help progress the field of drug repurposing for the benefit of patients, public health and medicines development
- …