44,762 research outputs found
On pattern classification algorithms - Introduction and survey
Pattern recognition algorithms, and mathematical techniques of estimation, decision making, and optimization theor
Binding Energies and Scattering Observables in the ^3He^4He_2 Atomic System
The ^3He^4He_2 three-atomic system is studied on the basis of a hard-core
version of the Faddeev differential equations. The binding energy of the
^3He^4He_2 trimer, scattering phase shifts, and the scattering length of a ^3He
atom off a ^4He dimer are calculated using the LM2M2 and TTY He-He interatomic
potentials.Comment: Contribution to Proceedings of the 17th International IUPAP
Conference on Few-Body Problems in Physics (Durham, North Carolina, USA, June
5-10, 2003
Dynamics of thermalisation in small Hubbard-model systems
We study numerically the thermalisation and temporal evolution of the reduced
density matrix for a two-site subsystem of a fermionic Hubbard model prepared
far from equilibrium at a definite energy. Even for very small systems near
quantum degeneracy, the subsystem can reach a steady state resembling
equilibrium. This occurs for a non-perturbative coupling between the subsystem
and the rest of the lattice where relaxation to equilibrium is Gaussian in
time, in sharp contrast to perturbative results. We find similar results for
random couplings, suggesting such behaviour is generic for small systems.Comment: 4 pages, 5 figure
Feshbach resonant scattering of three fermions in one-dimensional wells
We study the weak-tunnelling limit for a system of cold 40K atoms trapped in
a one-dimensional optical lattice close to an s-wave Feshbach resonance. We
calculate the local spectrum for three atoms at one site of the lattice within
a two-channel model. Our results indicate that, for this one-dimensional
system, one- and two-channel models will differ close to the Feshbach
resonance, although the two theories would converge in the limit of strong
Feshbach coupling. We also find level crossings in the low-energy spectrum of a
single well with three atoms that may lead to quantum phase transition for an
optical lattice of many wells. We discuss the stability of the system to a
phase with non-uniform density.Comment: 10 pages, 5 figure
An Automated Social Graph De-anonymization Technique
We present a generic and automated approach to re-identifying nodes in
anonymized social networks which enables novel anonymization techniques to be
quickly evaluated. It uses machine learning (decision forests) to matching
pairs of nodes in disparate anonymized sub-graphs. The technique uncovers
artefacts and invariants of any black-box anonymization scheme from a small set
of examples. Despite a high degree of automation, classification succeeds with
significant true positive rates even when small false positive rates are
sought. Our evaluation uses publicly available real world datasets to study the
performance of our approach against real-world anonymization strategies, namely
the schemes used to protect datasets of The Data for Development (D4D)
Challenge. We show that the technique is effective even when only small numbers
of samples are used for training. Further, since it detects weaknesses in the
black-box anonymization scheme it can re-identify nodes in one social network
when trained on another.Comment: 12 page
Two--Electron Atoms in Short Intense Laser Pulses
We discuss a method of solving the time dependent Schrodinger equation for
atoms with two active electrons in a strong laser field, which we used in a
previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to
calculate ionization, double excitation and harmonic generation in Helium by
short laser pulses. The method employs complex scaling and an expansion in an
explicitly correlated basis. Convergence of the calculations is documented and
error estimates are provided. The results for Helium at peak intensities up to
10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly
accurate calculations are presented for electron detachment and double
excitation of the negative hydrogen ion.Comment: 14 pages, including figure
Protein transduction: A novel tool for tissue regeneration
Tissue regeneration in humans is limited and excludes vitals organs like heart and brain. Transformation experiments with oncogenes like T antigen have shown that retrodifferentiation of the respective cells is possible but hard to control. To bypass the risk of cancer formation a protein therapy approach has been developed. The transient delivery of proteins rather than genes could still induce terminallydifferentiated cells to reenter the cell cycle. This approach takes advantage of proteintransducing domains that mediate the transfer of cargo proteins into cells. The goal of this brief review is to outline the basics of protein transduction and to discuss potential applications for tissue regeneration
Thermalisation of Local Observables in Small Hubbard Lattices
We present a study of thermalisation of a small isolated Hubbard lattice
cluster prepared in a pure state with a well-defined energy. We examine how a
two-site subsystem of the lattice thermalises with the rest of the system as
its environment. We explore numerically the existence of thermalisation over a
range of system parameters, such as the interaction strength, system size and
the strength of the coupling between the subsystem and the rest of the lattice.
We find thermalisation over a wide range of parameters and that interactions
are crucial for efficient thermalisation of small systems. We relate this
thermalisation behaviour to the eigenstate thermalisation hypothesis and
quantify numerically the extent to which eigenstate thermalisation holds. We
also verify our numerical results theoretically with the help of previously
established results from random matrix theory for the local density of states,
particularly the finite-size scaling for the onset of thermalisation.Comment: 22 pages, 23 figure
- …