169 research outputs found

    On minimizing coding operations in network coding based multicast: an evolutionary algorithm

    Get PDF
    In telecommunications networks, to enable a valid data transmission based on network coding, any intermediate node within a given network is allowed, if necessary, to perform coding operations. The more coding operations needed, the more coding resources consumed and thus the more computational overhead and transmission delay incurred. This paper investigates an efficient evolutionary algorithm to minimize the amount of coding operations required in network coding based multicast. Based on genetic algorithms, we adapt two extensions in the proposed evolutionary algorithm, namely a new crossover operator and a neighbourhood search operator, to effectively solve the highly complex problem being concerned. The new crossover is based on logic OR operations to each pair of selected parent individuals, and the resulting offspring are more likely to become feasible. The aim of this operator is to intensify the search in regions with plenty of feasible individuals. The neighbourhood search consists of two moves which are based on greedy link removal and path reconstruction, respectively. Due to the specific problem feature, it is possible that each feasible individual corresponds to a number of, rather than a single, valid network coding based routing subgraphs. The neighbourhood search is applied to each feasible individual to find a better routing subgraph that consumes less coding resource. This operator not only improves solution quality but also accelerates the convergence. Experiments have been carried out on a number of fixed and randomly generated benchmark networks. The results demonstrate that with the two extensions, our evolutionary algorithm is effective and outperforms a number of state-of-the-art algorithms in terms of the ability of finding optimal solutions

    Measurement of the proton form factor by studying e+eppˉe^{+} e^{-}\rightarrow p\bar{p}

    Full text link
    Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of e+eppˉe^{+}e^{-}\rightarrow p\bar{p} at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal (GE=GM)(|G_{E}|= |G_{M}|). In addition, the ratio of electric to magnetic form factors, GE/GM|G_{E}/G_{M}|, and GM|G_{M}| are extracted by fitting the polar angle distribution of the proton for the data samples with larger statistics, namely at s=\sqrt{s}= 2232.4 and 2400.0 MeV and a combined sample at s\sqrt{s} = 3050.0, 3060.0 and 3080.0 MeV, respectively. The measured cross sections are in agreement with recent results from BaBar, improving the overall uncertainty by about 30\%. The GE/GM|G_{E}/G_{M}| ratios are close to unity and consistent with BaBar results in the same q2q^{2} region, which indicates the data are consistent with the assumption that GE=GM|G_{E}|=|G_{M}| within uncertainties.Comment: 13 pages, 24 figure

    Observation of the isospin-violating decay J/ψϕπ0f0(980)J/\psi \to \phi\pi^{0}f_{0}(980)

    Get PDF
    Using a sample of 1.31 billion J/ψJ/\psi events collected with the BESIII detector at the BEPCII collider, the decays J/ψϕπ+ππ0J/\psi \to \phi \pi^{+}\pi^{-}\pi^{0} and J/ψϕπ0π0π0J/\psi \to \phi \pi^{0}\pi^{0}\pi^{0} are investigated. The isospin violating decay J/ψϕπ0f0(980)J/\psi \to \phi \pi^{0} f_{0}(980) with f0(980)ππf_{0}(980) \to \pi\pi, is observed for the first time. The width of the f0(980)f_{0}(980) obtained from the dipion mass spectrum is found to be much smaller than the world average value. In the π0f0(980)\pi^{0} f_{0}(980) mass spectrum, there is evidence of f1(1285)f_1(1285) production. By studying the decay J/ψϕηJ/\psi \to \phi\eta', the branching fractions of ηπ+ππ0\eta' \to \pi^{+}\pi^{-}\pi^{0} and ηπ0π0π0\eta' \to \pi^{0}\pi^{0}\pi^{0}, as well as their ratio, are also measured.Comment: 10 pages, 10 figures, published in Phys. Rev.

    An amplitude analysis of the π0π0\pi^{0}\pi^{0} system produced in radiative J/ψJ/\psi decays

    Get PDF
    An amplitude analysis of the π0π0\pi^{0}\pi^{0} system produced in radiative J/ψJ/\psi decays is presented. In particular, a piecewise function that describes the dynamics of the π0π0\pi^{0}\pi^{0} system is determined as a function of Mπ0π0M_{\pi^{0}\pi^{0}} from an analysis of the (1.311±0.011)×109(1.311\pm0.011)\times10^{9} J/ψJ/\psi decays collected by the BESIII detector. The goal of this analysis is to provide a description of the scalar and tensor components of the π0π0\pi^0\pi^0 system while making minimal assumptions about the properties or number of poles in the amplitude. Such a model-independent description allows one to integrate these results with other related results from complementary reactions in the development of phenomenological models, which can then be used to directly fit experimental data to obtain parameters of interest. The branching fraction of J/ψγπ0π0J/\psi \to \gamma \pi^{0}\pi^{0} is determined to be (1.15±0.05)×103(1.15\pm0.05)\times10^{-3}, where the uncertainty is systematic only and the statistical uncertainty is negligible.Comment: Submitted to Phys. Rev. D 19 pages, 4 figure

    Tanshinones Inhibit the Growth of Breast Cancer Cells through Epigenetic Modification of Aurora A Expression and Function

    Get PDF
    The objectives of this study were to evaluate the effects of tanshinones from a Chinese herb Salvia Miltiorrhiza on the growth of breast cancer cells, and to elucidate cellular and molecular mechanisms of action. Tanshinones showed the dose-dependent effect on the growth inhibition of breast cancer cells in vitro, with tanshinone I (T1) the most potent agent. T1 was also the only tanshinone to have potent activity in inhibiting the growth of the triple-negative breast cancer cell line MDA-MB231. T1 caused cell cycle arrests of both estrogen-dependent and estrogen-independent cell lines associated with alterations of cyclinD, CDK4 and cyclinB, and induced breast cancer cell apoptosis associated with upregulation of c-PARP and downregulation of survivin and Aurora A. Among these associated biomarkers, Aurora A showed the most consistent pattern with the anti-growth activity of tanshinones. Overexpression of Aurora A was also verified in breast tumors. The gene function assay showed that knockdown of Aurora A by siRNA dramatically reduced the growth-inhibition and apoptosis-induction activities of T1, suggesting Aurora A as an important functional target of T1 action. On the other hand, tanshinones had much less adverse effects on normal mammary epithelial cells. Epigenetic mechanism studies showed that overexpression of Aurora A gene in breast cancer cells was not regulated by gene promoter DNA methylation, but by histone acetylation. T1 treatment significantly reduced acetylation levels of histone H3 associated with Aurora A gene. Our results supported the potent activity of T1 in inhibiting the growth of breast cancer cells in vitro in part by downregulation of Aurora A gene function. Our previous studies also demonstrated that T1 had potent anti-angiogenesis activity and minimal side effects in vivo. Altogether, this study warrants further investigation to develop T1 as an effective and safe agent for the therapy and prevention of breast cancer

    Identification of Genes That Promote or Antagonize Somatic Homolog Pairing Using a High-Throughput FISH–Based Screen

    Get PDF
    The pairing of homologous chromosomes is a fundamental feature of the meiotic cell. In addition, a number of species exhibit homolog pairing in nonmeiotic, somatic cells as well, with evidence for its impact on both gene regulation and double-strand break (DSB) repair. An extreme example of somatic pairing can be observed in Drosophila melanogaster, where homologous chromosomes remain aligned throughout most of development. However, our understanding of the mechanism of somatic homolog pairing remains unclear, as only a few genes have been implicated in this process. In this study, we introduce a novel high-throughput fluorescent in situ hybridization (FISH) technology that enabled us to conduct a genome-wide RNAi screen for factors involved in the robust somatic pairing observed in Drosophila. We identified both candidate “pairing promoting genes” and candidate “anti-pairing genes,” providing evidence that pairing is a dynamic process that can be both enhanced and antagonized. Many of the genes found to be important for promoting pairing are highly enriched for functions associated with mitotic cell division, suggesting a genetic framework for a long-standing link between chromosome dynamics during mitosis and nuclear organization during interphase. In contrast, several of the candidate anti-pairing genes have known interphase functions associated with S-phase progression, DNA replication, and chromatin compaction, including several components of the condensin II complex. In combination with a variety of secondary assays, these results provide insights into the mechanism and dynamics of somatic pairing

    Amplitude analysis and branching fraction measurement of D+s → K+K− π +

    Get PDF
    We report an amplitude analysis and branching fraction measurement of D+- s → K+K−π+- decay using a data sample of 3.19 fb−1 recorded with BESIII detector at a center-of-mass energy of 4.178 GeV. We perform a model-independent partial wave analysis in the low KþK− mass region to determine the K+K−S-wave line shape, followed by an amplitude analysis of our very pure high-statistics sample. With the detection efficiency based on the amplitude analysis results, the absolute branching fraction is measured to be B(D+ s → K+K−π+-) = (5.47 pm 0.08stat pm 0.13sys)

    Measurement of the Born cross sections for e+e- →η′π+π- at center-of-mass energies between 2.00 and 3.08 GeV

    Get PDF
    The Born cross sections for the process e+e-→η′π+π- at different center-of-mass energies between 2.00 and 3.08 GeV are reported with improved precision from an analysis of data samples collected with the BESIII detector operating at the BEPCII storage ring. An obvious structure is observed in the Born cross section line shape. Fit as a Breit-Wigner resonance, it has a statistical significance of 6.3σ and a mass and width of M=(2111±43±25) MeV/c2 and Γ=(135±34±30) MeV, where the uncertainties are statistical and systematic, respectively. These measured resonance parameters agree with the measurements of BABAR in e+e-→η′π+π- and BESIII in e+e-→ωπ0 within two standard deviations

    Search for the charged lepton flavor violating decay J /ψ →eτ

    Get PDF
    A search for the charged lepton flavor violating decay J/ψ→e±τ with τ →π π0ντ is performed with about 10×109 J/ψ events collected with the BESIII detector at the BEPCII. No significant signal is observed, and an upper limit is set on the branching fraction B(J/ψ→e±τ)<7.5×10-8 at the 90% confidence level. This improves the previously published limit by two orders of magnitude
    corecore